

1

CO₂ reduction due to "topography orientated" voyage-planning and navigation

-Prerequisites of ship handling simulators as training tool-

DST – Development Centre for Ship Technology and Transport Systems

TopoNav – CCNR Workshop on Inland Navigation CO₂ Emissions 12042011

CO₂ reduction IWT - TopoNav – Training with ship handling simulators

CO₂ reduction IWT - General aspects

What matters ?

CO₂ emitted per cargo-ton / km transported

Areas of concern

- technical waterways & ships
- **business company level** selection of ships, fleet-management, service design
- *nautical onboard level navigation, handling of ships*

CO₂ reduction IWT - nautical aspects

- Speed is a well known predominant driving factor for consumption (all kind of vehicles)
- Design speed can be achieved only with sufficient keel – clearance
- Consumption of ships is largely driven not only by speed but rather by the overriding factor keel - clearance

Variability of water depth (soundings) during a voyage generally occurs due to:

- topographical variance along a river or along a route (river and / or canal)
- positions in the cross section according to individual navigation
- water-level variance

CO₂ reduction IWT - nautical aspects

Objective:

Reduction of CO₂-emission & fuel consumption

How to deal with expected water depths ?

CO₂ reduction IWT - nautical aspects

Example 2*

length of route: 120 km, duration target: 10 hours

List of examples*

			speed			consumption	
Case	distance	duration	segment 1	segment 2	segment 3	basic / optimum	savings
N°	[km]	[hour]	[km/h]	[km/h]	[km/h]	[kw]	[%]
1	24	2	11	12	14	854 / <mark>800</mark>	6,8
2	120	10	11	11	15	4067 / <mark>3913</mark>	3,9
3	20	2	9	10	12	506 / <mark>501</mark>	1,0
4	28	2	12	15	16	1472/ <mark>1282</mark>	14,8
5	26	2	11	13	17	1280 / <mark>1035</mark>	19,1
6	36	12	11	12	13	1179 / 1114	5,8

*Ship: L=110mxB=11,4, draft 2,5m

Basic approach to the simulated optimization process

- 3 segments differ in length and water depth
- per segment only one speed
- discretisation speed interval 1 km/h
- specific & complex mathematical model for optimization

Findings

DSI

optimum speed per segment largely depends on

- water depth and
- its length relative to the total distance

> high saving potential

- especially if high average speed is needed and
- segments differ in water depth and length

CO₂ reduction IWT – nautical aspects

How to deal with these findings in practice (real life)

• A solution can be found using numerical methods for tabulated functions

$$P_D = f(Fr_h;T)$$

• By assuming simplified approximation functions such as

$$P_{Di} = P_{D0i} + k_i \cdot (Fr_h - Fr_{hi})$$

or

$$P_D = k(T) \cdot Fr_h^3$$

an analytical solution can be found, but the approximation error has to be evaluated ?!

Common practical situation : *fixed voyage order*.

- ✓ route (port of departure >>> port of destination)
- ✓ sailing duration-time (time of departure >>> target ETA)
- ✓ ship's draft

Target-setting: fuel consumption / CO₂ reduction ?

Basic awareness probably ok ? but how to deal with it ?

Enhancing awareness and experience by Simulator based training for concerned persons

Types of simulation scenarios (examples)

- 1. Simple scenarios >>> to show effects and to develop general approach to "topography oriented navigation"
- Close to "real" routing scenarios >>> to show specific "CO₂ – saving potential" along selected routes
- 3. Close to "real" driving scenarios >>> to develop specific navigation tactics for "topography oriented navigation"

CO₂ reduction IWT - training aspects

TopoNav – CCNR Workshop on Inland Navigation CO_2 Emissions 12042011

Prerequisites of ship handling simulators for close to "real" routing scenarios

- > a minimum of different types of inland-ships
- correctly implemented shallow water effects and other shiprelated effects
- correctly implemented topography (ECDIS is not enough)
- correctly implemented river current, wind and other external effects

Prerequisites of ship handling simulators for close to "real" routing scenarios

- possibility to record continuously & sum up speed, positions, keel clearance, rpm or energy or consumption
- possibility to replay
- > possibility to generate "stand alone / automatic simulations"

Learning targets for specific training with simulators

- basic understanding concerning shallow water effects related to CO₂ emission
- use of a simplified mathematical model for speed optimization
- rough cascading of ship's energy profile according to speed and keel clearance
- rough segmentation of route into stretches with averaged water depths
- translation of simplified calculation into voyage planning
 - envisaged speed per segment -

Topography orientated voyage planning and navigation appears to be

a possible approach to CO₂ -reduction

- Suitable simulators are useful tools to develop and train appropriate methods
- Suitable training is amongst others a solution to enhance awareness, i.e.

to make CO₂ -reduction happen!

Thanks for your attention !

CO_2 reduction IWT - simulation aspects

