CCNR Workshop on Inland Navigation CO2 Emissions

12. April 2011 Straßburg, Palais du Rhin

Reduction of CO₂ emissions by diesel-electric propulsion system for an existing cargo vessel

> Claus D. Christophel Torque Marine GmbH IPS Innovative Propulsion Systeme GmbH & Co. KG

Cargo vessel "ENOK" Test run I – before rebuilding*

Distance:		tringen – Rotterdam, December 2005	
Cargo:		Twheat	
Time:	7 day	s (67.25 hours)	
Propulsion:	2 x	370 kW diesel engine and transmission	
Power supply:	1 x	50 kVA generator	
Consumption: 4 460 litres of diesel fuel			

Cargo vessel "ENOK" Test run II – after rebuilding*

Distance: Cargo:	Buelstringen – Wormerveer, September 2010 1 350 T wheat
Time:	7 days (69.5 hours)
Current:	1 - 3 230 kWe diesel-electric power trains
Propulsion:	2 x 2x 230 kWe electric torque propulsions
Power supply:	1 x 50 kVA converter

Consumption: 3 300 litres of diesel fuel

Considerable reduction in CO₂ emissions is possible!

Conventionally powered inland water vessels are overpowered

Design criteria for the propulsion system Use of available power

In inland water transportation, 55 % of the available power is not used

Design criteria for the propulsion system Use of available power

Approach: the modular diesel-electric propulsion system

- 3 4 power trains deliver the propulsion power
 - Dynamically switching the power trains on and off provides enhanced energy efficiency
 - One power train (230 kWe)
 delivers the torque required
 for manoeuvring

The modular diesel-electric propulsion system of the cargo vessel "ENOK"

Innovative aspects and other benefits

Energy efficiency and environmental protection

- Dynamic delivery of the energy actually required
- Diesel generators always operate in their ideal performance range
 - low consumption and reduced exhaust emissions

Safety

- Redundant system components ensure reliability
- Switching power trains on without synchronisation of diesel generators
- Full torque in the respective drive / speed range facilitates safe manoeuvring, rerouting and stopping

Convenience

- Low vibration, quiet operation
- Thanks to water cooling and less waste heat, the engine room ventilation is reduced significantly

When used in new ships, propulsions can be smaller by up to 25 %

The modular system yields the ship design conditions necessary for optimal propeller inflow

Modular diesel-electric propulsion system Summary

Fuel saving (test run: 1 160 l = 26 %)

- Reduction of CO₂ emissions (test run: 3 082 kg)
- High energy efficiency
 - Direct drive without transmission
- Full torque from the first rotation