DAMENAir Lubrication as a means to reduceCost and CO2 emissions in Inland Shipping

Peter van Terwisga

Contents

- Introduction
- Energy and emission reduction in inland shipping
- Air Chamber Energy Saving (ACES) research

GLOBAL ACTIVITIES DAMEN SHIPYARDS GROUP

V Damen Technical Cooperation projects (current and recent)

- Damen Shipyards Gorinchem
- O Damen Marine Services
- Damen Trading & Chartering O Damen Schelde Naval Shipbuilding
- O Damen Schelde Gears
- O Damen Schelde Marine Services
- Amels
- O Bodewes Binnenvaart Millingen. O Damen Dredging Equipment

EUROPE

- Götaverken Cityvarvet
- O Damen Shipyards Gdynia
- Brixham Marine Services
- O Damen Shipyards Hardinxveld 🙆 Maaskant Shipyards Stellendam Oranjewerf

O Damen Shiprepair Rotterdam

O Damen Shipyards Bergum

Damen Anchor & Chain Factory

- O Scheldepoort O Spares Services Maritime Europe
- O Van Brink Rotterdam
- 🐵 Damen Marine Components Netherlands 🐵 Visser Den Helder

- Damen Marine Components Gdansk
- O Damen Shipyards Kozle
- O Damen Shipyards Galati AFRICA

O Damen Shipyards Cape Town

MIDDLE EAST

Albwardy Marine Engineering* 8 Nakilat Damen Shipyards Qatar* O Damen Shipyards Sharjah (FZE)*

AMERICAS

O Damex* @ Wilson, Sons**

- Spares Services Maritime Asia
 - O PT Dumas**
- Damen Shipyards Changde O Afai Southern Shipyard**
 - Song Cam Shipyard** O Damen Vinashin Shipyard*
 - Song Thu Shipyard**

Damen Trading Suzhou

Damen Yichang Shipyard*

O Damen Shipyards Singapore &

Damen Marine Components Suzhou &

DAMEN SHIPYARDS GROUP

FACTS AND FIGURES 2009

Turnover:	1.3 billion Euro
Employees:	
The Netherlands	2.300
International	3.3 <u>00</u> 5.600
Operating Companies:	
The Netherlands	17
Abroad	<u>18</u>
	35
Annual deliveries:	
Tugs / Workboats	83
Offshore Vessels	7
High Speed Craft & Ferries	39
Dredging & Specials	8
Cargo Vessels/Inland & Coastal	14
Naval & Yachts	<u>9</u>
	160

Damen Ships

Damen Ships

Energy and emissionreduction inland shipping

Transport over water is energy-efficient!

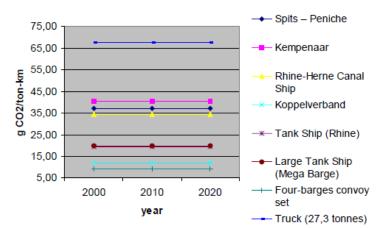


Figure 4: Carbon Dioxide emissions for 2000, 2010 and 2020 for BULK SHIPPING

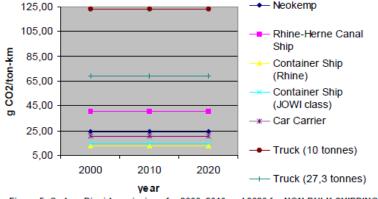


Figure 5: Carbon Dioxide emissions for 2000, 2010 and 2020 for NON-BULK SHIPPING

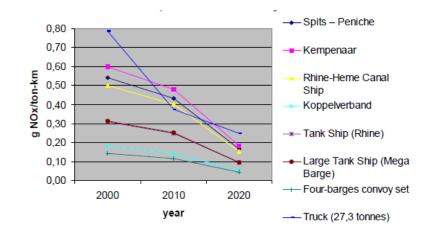


Figure 2: Nitrogen Oxide emissions for 2000, 2010 and 2020 for BULK SHIPPING

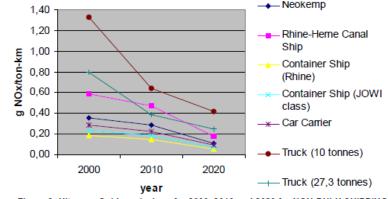
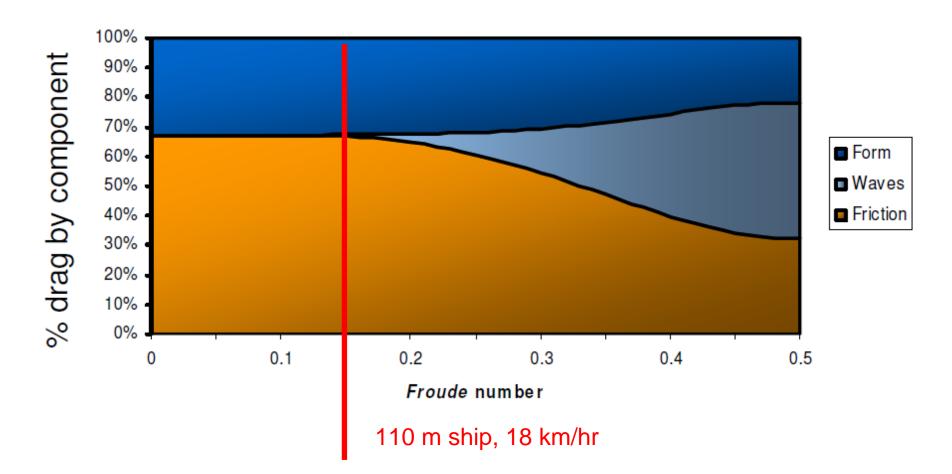


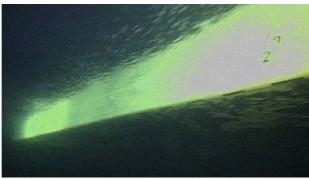
Figure 3: Nitrogen Oxide emissions for 2000, 2010 and 2020 for NON-BULK SHIPPING "Binnenvaart Voortdurend Duurzaam" – Royal Haskoning

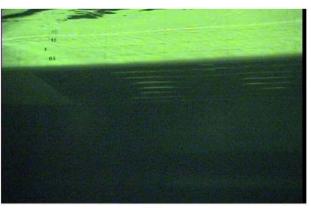
Energy and emissionreduction inland shipping


Energy and emission reduction; options

- Reducing Energy Consumption
 - Design for Service approach
 - Resistance reduction ACES
- Improving the efficiency of energy conversion
 - Improving engine efficiency and matching engines to Operational Profile
 - Efficient propulsors
 - Fuel Cells
- Pre-, while- and aftertreatment of fuel and emissions
- Alternative fuels (LNG)
- Crew behaviour and operational strategy with a focus on fuel saving.

Resistance

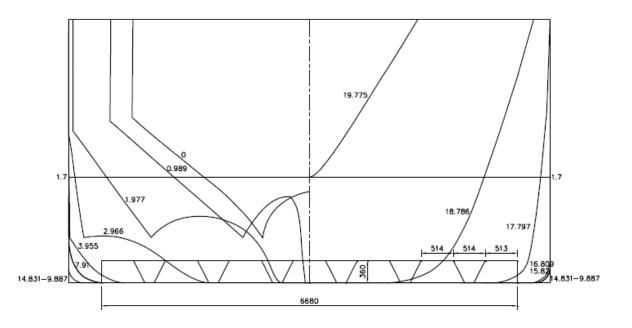

Total resistance



Reducing frictional resistance

- An (enduring) sleek surface
 - Anti-foulings
 - maintenance
- Air Iubrication
 - By airbubbles
 - By airsheet
 - By air cavity chambers

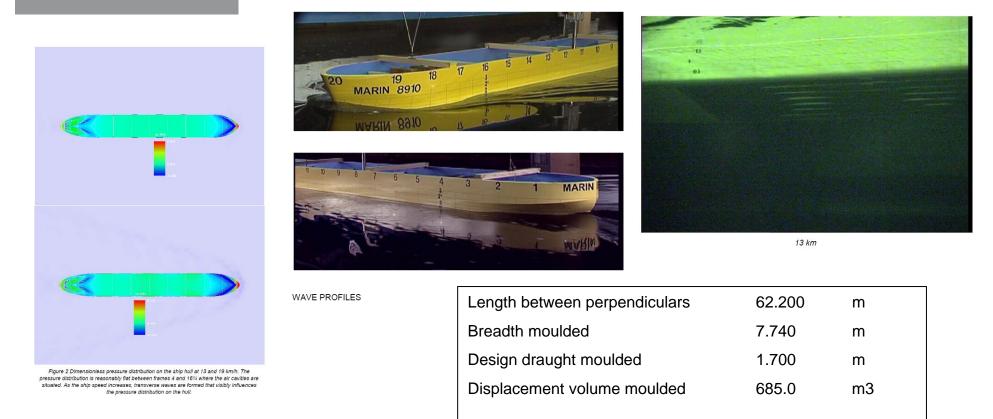
Project PELS II



PELS II: Aims

- Insight in physics
 - Resistance reduction of two-phase flows and stability thereof
 - Resistance reduction by airfilms and air cavity chambers
 - Scale effects
 - Numerical modeling
- Design knowledge
 - Insight into the design consequences of airlubrication

PELS II: Project workplan



 Patented Air Chamber Energy Saving System: Costeffective combination of air chamberconcept and structural design

PELS II – Desk and Lab studies

RESISTANCE TEST No.	: 9809051
SHIP MODEL No.	: 8910
SHIP SPEED Vs	: 13.00 KM/H

DRAUGHT FWD : 1.700 m DRAUGHT AFT : 1.700 m

CFD calculations and modeltests with a number of air chamber configurations: Resistance reductions in excess of 10% predicted for full scale

PELS II: Full Scale Testing

- Spring 2009 full scale reference tests
- Mid 2009 refit of air chambers to ship
- Autumn 2009 Air chamber tests

PELS II: Projectuitvoering

 Result: Depending on speed and loading condition a power reduction of 15%

PELS II: Effects

• What does this mean for the environment?

5000	Dutch inland ships
800	kW average installed power per ship
80.00%	load
180	g/kwh specific fuel consumption
4500	Sailing hours per year
2592000	ton fuel per year
8084448	ton CO2
1212667.2	ton CO2 savings at 15% resistance reduction
700	g/vkm HGV (CE Delft)
1732	mIn equivalent Heavy Goods Vehiclekm's

PELS II: Effects

• What does it mean for the inland shipping operator ?

800	kW average installed power per ship
80.00%	load
180	g/kwh specific fuel consumption
4500	Average sailing hours per year
612748.8	liter fuel per year
450	€ 1000 liter
275737	€year
41361	€fuel cost savings

SMOOTH project

- Shallow water effects research – Confirmation of savings
- Prototype air supply system development and validation of power requirement

Conclusion: ACES is ready for market introduction