Calculation of CO₂ Emissions for a Comparison of Transport Modes

Workshop Inland Navigation CO₂ Emissions Strasbourg, April 12th, 2011

Senior Economist Dr. Frank Trosky, Project Manager PLANCO 1990: External Cost of Transport... on behalf of German Railways

PLANCO 2007: Economical and Ecological Comparison ... on behalf of Water and Shipping Directorate East

The actual study confirms the general results of the year 1990:

The external costs of freight trains and inland water vessels are substantially lower than those of motor trucks.

For carbon dioxide the "ranking" of trains / vessels depends to a large extend on the specific conditions of the particular case.

Regarding traffic noise and accidents, inland navigation has advantages over freight trains whereas for classical air pollution the contrary is true.

Selected Transport Cases

Origin	Destination	Commodity Group	
Hamburg	Decin (Czech Republic)	Feedstuff	
Hamburg	Salzgitter	Coal	
Rotterdam	Duisburg	Coal	
Rotterdam	Großkrotzenburg (Main)	Coal	
Rotterdam	Dillingen (Saar)	Iron Ore	
Linz	Nürnberg	Iron and Steel	
Hamburg	Hannover	Mineral Oil Products	
Antwerpen	Ludwigshafen	Chemicals	
Rotterdam	Duisburg	Container	
Rotterdam	Basel	Container	
Hamburg	Berlin	Container	
Hamburg	Decin (Czech Republic)	Container	
Rotterdam	Stuttgart	Container	

Basis of the Comparative Analyses

Motor trucks

Trucks and truck-trailer combinations with a load of 24 tons one way and an empty return trip for bulk cargo. For the transport of containers, 2 TEU are calculated in both directions.

Freight trains

For bulk cargo, block trains with total freight volumes between 1,000 tons (feedstuff) and 3,500 t (iron ore), arranged as shuttles with planned empty return trips. Container trains with 750 tons of cargo load in both directions.

Inland vessels

Motor vessels and convoys with payloads between 1,450 tons (Elbe) and 12,000 tons (lower Rhine). Degree of capacity utilisation according to water levels. Share of empty return trips of vessels according to transport statistics, for convoys generally 100% empty return.

Energy Consumption of Inland Vessels

- Energy consumption of inland vessels depends mainly on the type of ship/convoy, the cruising speed relative to the water, the effective vessel draft and the dimensions of the waterways used.
- Bigger vessels and convoys consume considerably less energy per ton-km than smaller vessels.
- Existing studies often use too simplified approaches and assessments. The resulting figures on average fuel consumption per ton-km are thus often overestimated.

Energy Consumption of Inland Vessels

Basis Circumstances for Calculating Emissions

Methodology of Estimation of Emission-Factors

- Every motor has its specific emission-factor, but for specific types of motors these factors are rather similar.
- For the complete fleet of inland vessel the emissionfactors were estimated. Input data were given by the GL, motor building companies, the German Ministry of Transport, Building, and Urban Development, and the Central Commission for the Navigation of the Rhine.

Basis Circumstances for Calculating Emissions

Comparison of the results with other studies

Emissions in g/kWh

Source	СО	HC	NO _x	PT
Planco 2007	1,56	0,79	9,56	0,22
GL 1998	2,60	0,60	9,00	0,20
VBD 2001	1,16	0,68	9,60	0,20
ifeu 2005	n.A.	0,94	12,00	0,34

Basis Circumstances for Calculating Emissions

Age of the Modal Fleets

Calculation of CO₂ Emissions for a Comparison of Transport Modes

Thank you for your kind Attention!

Senior Economist Dr. Frank Trosky, Project Manager