Environmental performance of inland shipping in comparison with other modes

CCNR CO₂ conference, 12 April 2011, Strasbourg

Eelco den Boer

CE Delft

- Independent, not-for profit consultancy, founded in 1978
- Based in Delft, the Netherlands
- Transport, Energy, Economy
- 15+ years of experience with environmental policies for aviation and shipping
- Clients include European Commission, national governments, ports, branch organisation, NGOs, IMO

Outline

- Introduction
- Objectives
- Methodological framework
- Factors defining the specific emissions
- Comparison of transport modes on specific links
- Conclusions

Objectives

- •Why comparing emissions of transport modes?
 - •60% emission reduction in transport
- •EU Transport White Paper put modal shift on the agenda
 - Climate point of view now
 - Air quality remains important
 - •30-50% over 300 km distance by waterborne and rail in 2030-2050
- Ports face accessibility and sustainability difficulties
 - Rotterdam applies modal shift criteria at MVII:
 - -Inland shipping: 45% (currently approx. 30%).
 - -Rail: 20% (currently approx. 10%).
 - -Road: 35% (currently approx. 60%).
- Sustainability programs of shippers

Methodology

- STREAM = Study into TRansport Emissions of All Modes
- Different factors define the emissions per output (tkm):

System boundary

- Emission characteristics (e.g. Euro standard)
- Scale
- Detouring
- Pre- and end haulage
- Type of goods
- Well-to-wheel analysis
- Main pollutants covered
 - CO₂, NO_X, PM and SO₂
- Current situation (2009) and 2020
- Representing the EU situation (electricity/refining)
- Focussing on longer distance

Methodology

Calculation of emission factors grammes per tkm for all modes

$$EM_{overall} = \frac{vkm_{\text{mod}e}EM_{\text{mod}e} + (vkm_{truck} + EM_{truck})_{post-transport} + EM_{tranfer}}{vkm_{truck} \cdot load_{\text{mod}e}}$$

- •EM_{mode}: emissions per vehicle including the fuel cycle
- Load: maximum capacity * utilization factor
- Detour factor: vkm_{mode}/vkm_{truck}
- Emission data
 - Road: Dutch emissions inventory (TNO)/TREMOVE
 - Rail: Ecotransit
 - Inland barge: Dutch emissions inventory (TNO)
 - Seagoing ship: 2nd IMO GHG study

Impact of detouring/pre-end haulage

- Case: Large scale container transport Rotterdam-Duisburg-Essen
 - Road: Rotterdam-Essen; 230km
 - IWT: Rotterdam-Duisburg; 214 km + road 26 km

depart	arrival	rail/road	iww/road	SSS/road
Port of Rotterdam	Milan	1.06		
Port of Rotterdam	Koln	0.91	1.13	
Hamburg	Duisburg	1.00		
Port of Rotterdam	Thionville	1.02	1.72	
Port of Rotterdam	Vienna	1.07	1.43	
Port of Rotterdam	Duisburg	1.04	1.06	
Port of Rotterdam	Essen via Duisburg	1.04	1.06	
Port of Rotterdam	Dortmund via Duisburg	1.09	1.10	
Groningen Port	Vienna	1.24	1.50	
Antwerp Port	Barcelona	1.03		2.52
Bilbao Port	Port of Rotterdam	1.04		1.04
Amsterdam Port	Regensburg	1.05	1.41	

Impact of scale of transport/future outlook

Comparison of specific modes on specific links

- Average emission technology (2010)
- Representative logistical data
 - Real world distances/detouring/end haulage
- Emissions of transhipment included
- Definition of goods types
- Amsterdam Regensburg
- Rotterdam Duisburg, incl. end haulage

Steel Amsterdam-Regensburg

Steel Amsterdam-Regensburg

Steel Amsterdam-Regensburg

Containers Rotterdam-Duisburg

Containers Rotterdam-Duisburg

Containers Rotterdam-Duisburg

Conclusions

- Many factors influence emissions
 - Logistical characteristics
 - Emission standard
 - Type of good
- Modal comparisons depend heavily on vehicle capacity and utilisation
 - CO₂ emissions:
 - Clear advantage for large ships
 - Small ships: load factors decisive
 - Pollutant emissions: road transport comparable or cleaner
 - Strongly dependent on case
 - 2020 difference greater than 2010
 - Significant GHG reduction potential IWT
 - Fuel efficiency and carbon-intensity road likely to improve

Thank you for your attention!

Eelco den Boer Senior consultant Transport emissions CE Delft boer@ce.nl

