

Measuring and managing CO2 emissions of European chemical transport Jos Verlinden, Cefic

Workshop Inland Navigation CO2 Emissions Strasbourg 12 April 2011

Agenda

- **1. Short introduction of Cefic and Responsible Care**
- 2. Measuring transport CO2 emissions
- 3. Opportunities to reduce transport CO2 emissions

What is Cefic?

European Chemical Industry Council: *http://www.cefic.org/* Cefic is the voice of the European chemical industry based in Brussels Cefic represents 27,000 chemical companies that produce 29% of the world chemical production and employ over 1.2 million people

Staff & network:

150 staff

4000 industry experts from companies & federations

- Horizontal Programmes, Strategy Implementation Groups and Issue Teams
- 150 Sector Groups

Members

28 national federations in Europe50 major international companies450 business company members

CEFIC was founded in 1972

Responsible Care

Voluntary initiative of the global Chemical Industry

« Responsible Care is the world-wide chemical industry's commitment to continuous improvement in all aspects of Health, Safety and Environment performance of its products and processes and to openess in communication about its activities and achievements. »

RC Partnerships: Transport & Distribution

ECTA:

European RC Programme for chemical transport companies

FECC:

European RC Programme for chemical distribution companies

Main Cefic areas of attention

Development of Best Practice Guidelines

SQAS

Advocacy of chemical industry positions

- Behaviour Based Safety (BBS)
- Logistics performance reporting
- Driver shortage
- Driver waiting times
- > Transport equipment
- Security of transport
- Safety of loading/unloading
- > Transperanto
- GHG emissions

- A world class assessment
 - system for LSP's:
- > 5 SQAS modules
- > 70 accredited assessors
- > 4,500 assessments
- 16,000 consultations
- > CDI for sea transport
- **EBIS** for barges

- **Dangerous goods regulations**
- European transport policy
- **Rail Single Wagon Transport**
- Vehicle weights (44T)
- Sustainable logistics

EU overall emissions trajectories

Source: SULTAN, Development of an Illustrative Scenarios Tool for Assessing Potent Impacts of Measures on EU transport GHG; www.eutransportghg2050.eu

- The EU-27 GHG emissions from transport have been increasing by 1,4%/year over the past years and are projected to continue to do so.
- The growth rate of transport GHG emissions has the potential to undermine the EU's efforts to meet long-term GHG emission reduction targets, if no action is taken.

7

Sustainable transport – GHG emissions

Actions already undertaken by Cefic

- Cefic sponsored study by Prof McKinnon (Edinburgh) on transport carbon measurement and management for chemical transport
- Cefic Guidelines for measuring and reducing transport CO2 emissions
- First rough estimate of chemical transport carbon footprint

McKinnon Report – July 2010

The report can be downloaded at http://www.cefic.be/en/sustainable-logistics.html

9

9

Cefic/ECTA Guidelines for Measuring and Managing CO₂ Emissions from Freight Transport Operations April 2011

Guidelines for Measuring and Managing CO₂ Emission from Freight Transport Operations

- Calculation method
- Average emission factors
- Calculation template
- Opportunities to reduce emissions

See www.cefic.be

Average emission factors recommended by McKinnon

Transport mode	gCO2/Ton - km
Road transport	62
Rail transport	22
Barge transport	31
Short sea	16
Deep-sea container	8
Deep-sea tanker	5
Intermodal road / rail	26
Intermodal road / barge	34
Intermodal road / short sea	21
Pipelines	5
Airfreight	602

Organisation	gCO ₂ / tonne-km
INFRAS	31
TRENDS	31
Tremove	32.5
IFEU	28-35

Other Published Barge Emission Factors

* Verkehrsrundschau 44/2009

** Verkehr im Umweltmanagement - Anleitung zur betrieblichen Erfassung verkehrsbedingter Umwelteinwirkungen – Sept 2009 based on Borken et al. 1999

Ship type	Upstream	Downstream	Canal
Container Barges *			
Small (90TEU)	63.4	31.3	44.5
Medium (208 TEU)	28.3	14.7	17.4
Large (500 TEU)	19.6	10.2	
Tank / Solid Bulk Barges** 50% load factor		gCO ₂ /tonne-km	
800 t	70.8	27.3	39.3
1250 t	62.6	24.1	34.3
1750 t	57.7	22.3	31.1
2500 t	46.0	18.1	25.8

Cefic/ECTA Guidelines for measuring and managing of CO₂ emissions from freight transport operations

Generic company approach for establishing a green logistics strategy and action plan

Key steps

- Establish framework for CO2-footprint measurement
- Calculate baseline (e.g. CO2-footprint in 2010 or 2011)
- Determine realistic CO2-emission reduction target (baseline -> 2020)
- Establish action plan, identifying measures to reduce CO2-footprint
- Monitor progress and report year-on-year achievement

Methods to calculate CO₂ emissions from freight transport operations

Activity-based approach

In the absence of energy consumption data, it is possible to make a rough estimate of the carbon footprint of a transport operation by applying a simple formula:

 CO_2 = tons transported x average transport distance x CO_2 -emission factor per ton-km

Energy /fuel consumption-based approach

Since almost all CO_2 -emissions from freight transport are energy/fuel-related, this is the simplest and most accurate way of calculating these emissions, using the following formula: CO_2 = fuel consumption (in litres) x CO2-factor

Activity-based approach Cefic recommended CO₂ emission calculation template

Calculation Template for CO2-Emissions from Freight Transport Operations

Mode of Transport	Tops	Avg kms	Ton-kms		g CO ₂ /	Tone CO
	1013	(estimates:)				
Road transport bulk	100.000	500	50.000.000		62	3.100
Road transport packed	100.000	500	50.000.000		62	3.100
Rail transport	100.000	500	50.000.000		22	1.100
Barge transport bulk	100.000	500	50.000.000		31	1.550
Barge transport packed	100.000	500	50.000.000		31	1.550
Short sea bulk	100.000	500	50.000.000		16	800
Short sea packed	100.000	500	50.000.000		16	800
Intermodal road / rail	100.000	500	50.000.000		26	1.300
Intermodal road / barge	100.000	500	50.000.000		34	1.700
Intermodal road / short sea	100.000	500	50.000.000		21	1.050
Pipelines	100.000	5	500.000		5	3
Deep-sea container	100.000	5.000	500.000.000		8	4.000
Deep-sea tanker	100.000	5.000	500.000.000		5	2.500
Airfreight	1.000	5.000	5.000.000		602	3.010
TOTAL	1.301.000		1.505.500.000	1		25.563

16

Results Cefic survey 12 chemical companies Share of different transport modes

%

17

Decarbonising logistics operations

Main opportunities

- Fuel efficiency of vehicles (design, operation & maintenance)
- Carbon intensity of fuel (fossil fuel, biofuel, electricity, ...)
- Modal split (pipeline, sea, barge, rail, road, intermodal, air)
- Supply chain design
- Vehicle utilisation (payload, empty running,....)

Opportunities to reduce CO₂ Emissions

	Opportunities	Description	Considerations for implementation	Parties involved
Α.	Modal shift	Shift to 'greener' transport modes		
1.	Shift from Bulk Road to Single Wagon (SW) Rail Transport	Bulk road transport is replaced by transport in single wagon rail tank cars.	Availability of a direct rail connection at dispatching and receiving location. Availability of sufficient storage capacity at dispatching and receiving location. Willingness of customer to receive bigger quantities. Frequency and reliability of SW rail service. Transit time. Cost. Product constraints.	- Shipper - Consignee - LSP
2.	Switch from road to intermodal short sea transport (SS)	Road transport is replaced by intermodal short sea/road transport (road-SS-road) whereby the goods are transported over the major part of the distance by sea in ro-ro ferries or container ships. The transfer from road to SS and vice-versa is carried out at intermodal sea terminals. If a rail connection is available, the first and last mile can also be done by rail instead of road.	Availability of an intermodal sea terminal close to the point of origin and the point of destination. Frequency and reliability of intermodal SS service. Availability of sufficient intermodal SS capacity. Transit time. Cost. Product constraints	- Shipper - Consignee - LSP
3.	Switch from road to intermodal barge/road transport	Road transport is replaced by intermodal barge/road transport (road-barge-road) whereby the goods are transported over the major part of the distance by barge in containers. The transfer from road to barge and vice-versa is carried out at intermodal barge/road terminals.	Availability of intermodal barge/road terminals sufficiently close to the point of origin and the point of destination. Frequency and reliability of intermodal barge service. Availability of sufficient intermodal barge capacity. Transit time. Cost. Product constraints	- Shipper - Consignee - LSP

Opportunities to reduce transport emissions

- Shift from Bulk Road to Single Wagon (SW) Rail Transport
- Switch from road to intermodal short sea transport (SS)
- Switch from road to intermodal barge/road transport
- Switch from road to intermodal short sea transport (SS)
- Product swap arrangements
- Relax monthly order-invoice cycles
- Maximize direct deliveries
- Improved routing
- Flexibility of loading and unloading time windows
- Flexibility of delivery dates
- Increase availability of tank cleaning stations at key locations
- Reduce black lists of previously loaded products

Opportunities to reduce transport emissions (cont.)

- Horizontal cooperation between logistics service providers
- Shared use of dedicated fleets (tank & silo transport)
- Increase maximum authorised vehicle weights
- Expand storage capacity at delivery points
- Vendor Managed Inventory (VMI) or Haulier Managed Inventory (HMI)
- Improve vehicle design
- Improve vehicle maintenance
- Improve vehicle operation (eco-efficient driving)
- Make use of energy sources with a lower carbon intensity

Business Case for 'Green Logistics' in companies

Main drivers

- Efficiency improvements / cost reductions
- Corporate green image (sustainability index / CSR etc)
- Customer expectations
- Future legislation

Share of transport CO2 emissions compared to total chemical company CO2 emissions is relatively small (2-10%)

Conclusions

- We are still at the beginning of the journey
- Most companies are still in the learning phase but awareness is growing quickly
- There is no silver bullet for reducing emissions: a combination of many actions will be needed
- Start with 'low hanging fruit' (dixit Alan McKinnon)
- Improving logistics efficiencies and reducing logistics costs go hand in hand with transport decarbonisation... to a certain extent
- To realize the required CO₂ emission reduction targets, shippers, logistics service providers, associations and government bodies need to engage in intensive collaboration

Thank you for your attention!

