

Overview of technologies for electric propulsion

Khalid Tachi (EICB) Benjamin Friedhoff (DST)

Online workshop: "Alternative energy sources for electrical propulsion systems in inland navigation" 2021-04-20

Definition

CHAPTER 11 SPECIAL PROVISIONS APPLICABLE TO ELECTRIC VESSEL PROPULSION

Article 11.00 Definitions

For the purposes of this Chapter, the following definitions shall apply

•••

2. 'electric vessel propulsion' either a purely electric or diesel-electric or gas-electric propulsion installation of a craft, which is operated either by its own power supply or by the on-board network and comprising at least one electric propulsion motor. In the case of a diesel-electric or

Outline

- Motivation for electric propulsion
- Transfer from other modes
- Regulatory requirements
- Components

Motivation

- Less investment costs?
- Less energy costs?
- Less maintenance?
- More payload?
- More cargo space?
- Shippers pay higher freight rates?
- \rightarrow Need for other drivers

Motivation

- Global and societal challenge to mitigate climate change
- Awareness of health risks caused by air pollution
- Congested roads but reserve capacity on the inland waterways
- Long lifecycles may risk modal shift
- Air quality
- Noise and vibration
- Manoeuvrability
- Cargo attracting image
- Future proof
- Freedom in ship design
- Incentive schemes
- Funding where no business case

Other modes

- A great invention 5500 years ago
- Archimedes' principle even better at low speeds

Source: Wikimedia.org

Source: dpa

Source: www.geo.de/Reisen

• Environmental performance of rail and road improving at high pace

Other modes

- Rail
 - 50% of lines electrified
 - 80% of traffic with electric traction
 - Overhead Line or conductor rail
 - Electricity from the grid
 - Diversity of systems (1.5 kV DC to 25 kV AC)
 - Kinetic Energy Recovery

Other modes

- Road
 - Overhead Line
 - Electricity from the grid
 - Lithium-Ion Batteries
 - Kinetic Energy Recovery
 - Charging at home
 - E-Scooters, Pedelecs, Cars
 - Urban Transport
 - Long haulage and FC drives in development

Source: PINTSCH BAMAG

And IWT?

- Long lifecycles
- Inefficient propulsion
- No access to energy from the grid
- Almost no charging infrastructure ٠
- No recuperation •

1967 Overhead Line

Regulatory Requirements

- ES-TRIN 2021 Chapter 11
- Article 11.01 General Provisions
 - At least two electrical power sources, switchgear, motor, ...
 - One electric motor: Capability of making steerageway in case of a fault in the power electronics and/or control system
 - General plans including the propulsion components
 - Monitoring of battery capacity, always sufficient to reach a berth, alarm at critical capacity
 - ... and many more to guarantee safety for cargo, crew and navigation

Electric engine

- Permanent-magnet synchronous motors can drive the propeller without a gearbox
- The same torque requires ~20-30% of weight and volume of asynchronous motors (ASM)

Hybrid systems

<u>https://dst-org.de/e-binnenschiff</u> <u>https://www.ccr-zkr.org/12080000-en.html</u> <u>https://www.dst-org.de/wp-content/uploads/2018/11/Hydrogen-Feasibility-Study-MariGreen.pdf</u> <u>https://www.dst-org.de/grendel/</u>

Energy density of fuels

Including tank weight

Factor compared to diesel fuel	Volume factor based	Packaging factor ship	Volume incl. space factor
Methanol	2,3	1	2,3
LNG	1,6	2	3,2
NH3 cooled	3,1	1.1	3,1
NH3 10 bar	3,1	2	6,3
cryogenic H2	6,3	2	12,5
comp. H2 700 bar	7,1	2,5	17,7
comp. H2 350 bar	12,5	2,5	31
Battery	50	2	100

MJ/dm3

13

Transition Pathways

Thank you for your attention!

Khalid Tachi – <u>k.tachi@eicb.nl</u> – +31 10 798 98 30 Benjamin Friedhoff – <u>friedhoff@dst-org.de</u> – +49 203 99369 29