

European collaboration in the field of CyberSecurity for Railways - Inspiration for Inland Navigation?

Workshop on cybersecurity in Inland Navigation

Introduction to Railway Systems

Biggest business premise in Europe – with public access

- Stations as gate to railway transportation
- Europe-wide rail networks

Strong regulations of technical installations (according Safety)

- EN 50126 (Reliability, Availability, Maintainability, Safety RAMS)
- EN 50128 (Software for safety systems)
- EN 50159 (Communication)
- Etc.
- → National Safety Authority has to grant admission for every interlocking
- → Categorized as **Critical Infrastructures** in most European countries

Threat Landscape in the Railway Domain

- Railway technologies are sector specific and split into Signaling, Rolling Stock and Fixed Installations
- Systems have a lifetime of 30+ years
- Digitalization initiatives move Infrastructure towards intelligent, more connected, more assisted systems
- Obsolescence of Safety systems exposed to current and future cyber threats landscape
- Standards for Railways currently not up to date with CyberSecurity challenges
- Awareness not at a desired level

Security Controls vs. Reality

Security Controls vs. Reality

- Netzwerk-Probleme w\u00e4hrend der Installation
- Büro 069-265-37200

Passwörter

- Benutzer : disponent Kennwort :disponent
- Benutzer: administrator Kennwort: bundesbahn

The role of ISACs in Europe

- Information Sharing and Analysis Centres (ISACs) required by European CyberSecurity Act
- Non-profit organizations that provide a central resource for gathering information on cyber threats (in many cases to critical infrastructure)
- Allow two-way sharing of information between the private and the public sector
- ISACs create a platform for such cooperation in term of sharing information about root causes, incidents and threats, as well as sharing experience, knowledge and analysis
- Further information can be found in the report by ENISA: https://www.enisa.europa.eu/publications/information-sharing-and-analysis-center-isacs-cooperative-models

Members per Countries (Sept 2019)

Already 50 organizations taking part since ER-ISAC Kick-Off end of 2018

Co Chair FR /DE /BE /NL

Members FI /NO /DK /IT /CH /AT /CZ

Members to be contacted

Possible future partnership

Why collaborate in CyberSecurity in the Railway?

- Standardization of technologies used across Countries (even outside EU = ERTMS)
- Specific technologies for Signaling systems and Rolling Stock
- Same supply chain
- Specific Standardization for Safety in the Railway
- The same issue affects us all

How will we benefit from the ER-ISAC – Our Vision

- Experiences in how aspects of cyber security are handled
 - CyberSOC, ICS, IoT, Artificial Intelligence usage, Crisis management, ...
- Cybersecurity standards for Safety related products
- Cybersecurity products certifications and experience
- Alerts/ early warnings, Threat intel, experiences on products vulnerabilities specific to Railway,
 References on a wider range than national
- Meet regularly to discuss and share information (e.g. threat landscape, fact based approached, ...)
- Security Supply chain management (same level of security MUST BE delivered across European Railway by same provider)

Collaboration on CyberSecurity Standardization

CENELEC TC 9X – WG 26 (CyberSecurity)

- Working Group on "Railway Applications Cybersecurity"
 - Covers Signalling, Rolling Stock, Fixed Installation
 - Started November 2017

- 72 experts (20-30 experts participating to F2F meetings; approx. 6-10 meetings per year)
- Experts from 12 countries (+ ERA and ENISA as observer)

Goal:

- Establish a TS (prTS 50701) for handling CyberSecurity in a unified way for the whole railway sector
- Based on already existing IT-Security standards (e.g. IEC 62443)

Status:

Enquiry phase finished with ~2200 comments from NCs; TS to be finalized till mid 2020

Collaboration on CyberSecurity Standardization

4	1	Scope	
5 6	2 2.1	Normative references	7
7 8 9 10 11	3 3.1 3.2 3.3 3.4	Terms, definitions and abbreviations Reference: Terms Abbreviations Verbal forms	8 8 20 21
12 13 14 15 16	4 4.1 4.2 4.3 4.4	Cybersecurity within a Railway System Life Cycle	22 22 28 30
17 18 19 20 21 22	5 5.1 5.2 5.3 5.4 5.5	System Specification Railway System Railway Asset Reference Model Railway Physical Architecture Model Railway Zoning and Segmentation Model The Rail Reference Architecture	32 33 34 34 37
23 24 25 26 27 28 29 30	6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	System Definition and High-Level Risk Assessment Introduction SuC - System under consideration Essential functions Assets supporting the essential functions Threat landscape High level risk assessment process Zones and conduits of the SuC	40 41 42 42 42
31 32 33	7 7.1 7.2	Detailed Risk Assessment	46 47
34 35 36 37	8 8.1 8.2 8.3	Security requirements Objectives Foundational Security Requirements Apportionment of Security Requirements	58 58 75
38 39 40 41 42 43	9 9.1 9.2 9.3 9.4 9.5	System Assurance and Acceptance for Operation. Overview	78 78 79 82 83
44 45 46 47 48 49	10 10.1 10.2 10.3 10.4 10.5	Operational, maintenance and disposal requirements Introduction Identify, Protect, Detect, Respond, Recover Security Supply Chain Management / Supplier Management Maintenance Network and communication security	84 84 85 86
1 4	ED 10	A C C C C C C C C C C	

50		Patcn Management					
51	10.7	Operational Requirements					
52	10.8	Event and incident management	. 8				
53	Anne	Annex A (informative) Handling conduits					
54		Introduction					
55	A.2	Requirements for conduits in IEC 62443					
56	A.3	Protection Profiles for Conduits					
30							
57	Annex	(B (informative) Handling Legacy Systems	. 9				
58		Introduction					
59	B.2	Basic Security risks					
60	B.3	Basic Process Activities					
61	B.4	Basic Security Countermeasures	. 9				
62 Annex C (informative) Security Design Principle							
63	C.1	Introduction	9				
64	C.2	Secure the weakest link					
65	C.3	Defence-in-depth					
66	C.4	Fail secure					
67	C.5	Grant least privilege					
68	C.6	Economise mechanism					
69	C.7	Authenticate requests	14				
70	C.8	Control Access					
-	C.9	Assume secrets not safe					
71		Make security usable					
72							
73	C.11	Promote privacy					
74		Audit and monitor					
75	C.13	Proportionality principle					
76		Precautionary principle					
77	C.15	Continuous Protection					
78	C.16	Secure Metadata					
79	C.17	Secure Defaults	12				
80	C.18	Trusted Components					
81	Annex	CD (informative) Safety and Security	13				
82	D.1	Introduction	13				
83	D.2	The differences between safety and security	13				
84	D.3	Security from a safety perspective	13				
85	D.4	Co-Engineering of Safety and Security	13				
86	D.5	Quantification of Security	13				
87	D.6	The relationship of Safety Integrity Levels and Security Levels	13				
88	D.7	Responsibility for Security	13				
89	Annex E (informative) Risk Acceptance Methods						
90	E.1	Introduction	13				
90 91	E.2	Example based on EN 50126	12				
91 92	E.2 E.3	Example Method (System Integrator)	13				
92 93	E.4	Example method (Operator)	14				
		F (normative) Generic Security Requirements and Cross-reference Table	14				
95	F.1	Generic Security Requirements (Normative)	14				
96	F.2	Security Requirements Cross-reference Table (Informative)	16				

How can the Inland Navigation benefit from cooperation

Assumed challenges:

- Finding technical expertise in CyberSecurity
- Not enough resources & funding (expertise, tools, personnel)
- Suppliers not always cooperative

The Strength of Unity as a Sector:

- Creation of expert groups from suppliers, industry and CyberSecurity providers (Threat Intelligence)
- Gather actors on board to lobby International Authorities to adapt Regulations (Compliance)
- Create communication bridges between operators and infrastructure managers CSIRTs for rapid intervention with experts to assist (Incident Response)
- Assess and create minimum security baseline to enforce it into supply chain (Cybersecurity by design)
- Integrate R&D innovation projects as a governance body / testing body (Continuous protection)
- Involve Locals Governments CSIRT's to assist in cross borders risks (Cyber resilience)

Thank you for your attention

M.Sc. Christian Schlehuber

Lead of CyberSecurity R&D

DB Netz AG I.NVI 1(S) Weilburger Str. 22 60326 Frankfurt am Main

Phone: +49 152 3753 7938

christian.schlehuber@deutschebahn.com

contact@er-isac.eu www.er-isac.eu

http://www.er-isac.eu