

Reduction of Fuel Consumption by Using Automatic Path-Following Systems

A. Lutz, Prof. Dr.-Ing. E.D. Gilles Institute for System Dynamics, University of Stuttgart, Germany

CCNR Workshop on Inland Navigation CO2 emissions, 12th April 2011

Reduction of Fuel Consumption by Using Automatic Path-Following Systems

A. Lutz, Prof. Dr.-Ing. E.D. Gilles Institute for System Dynamics, University of Stuttgart, Germany

CCNR Workshop on Inland Navigation CO2 emissions, 12th April 2011

Reduction of Fuel Consumption by Using Automatic Path-Following Systems

A. Lutz, Prof. Dr.-Ing. E.D. Gilles Institute for System Dynamics, University of Stuttgart, Germany

CCNR Workshop on Inland Navigation CO2 emissions, 12th April 2011

Table of Contents

1 Introduction

2 Calculation of Fuel Consumption

3 Optimization of Fuel Consumption

4 Summary and Outlook

Table of Contents

1 Introduction

Hardware

- Navigation computer
- Sensors to measure the dynamic state
- Sensors to capture information about the environment
- Access to the rudder

- Navigation computer
- Sensors to measure the dynamic state
- Sensors to capture information about the environment
- Access to the rudder

- Navigation computer
- Sensors to measure the dynamic state
- Sensors to capture information about the environment
- Access to the rudder

Hardware

- Navigation computer
- Sensors to measure the dynamic state
- Sensors to capture information about the environment
- Access to the rudder

- ECDIS chart
- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines

Software: (based on Radarpilot 720°)

ECDIS chart

- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines

- ECDIS chart
- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines

- ECDIS chart
- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines

- ECDIS chart
- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines

- ECDIS chart
- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines

- ECDIS chart
- Radar object tracking (fusion with AIS)
- Map matching: ECDIS chart with radar image
- Ranges of encounter for collision avoidance
- Guiding lines: Track control $(1\sigma \text{ accuracy: approx. } 2m)$

Table of Contents

2 Calculation of Fuel Consumption

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

$$R_{App}$$
 ... resistance of appendages

$$R_W$$
 ... wave making and wave breaking resistance

$$R_{Tr}$$
 ... resistance due to stern shape

$$R_{Add}$$
 ... additional resistance, e.g. wind

Total resistance as in [1], [2], [3]

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

R_F ... frictional resistance

- R_{App} ... resistance of appendages
- R_W ... wave making and wave breaking resistance
- R_{Tr} ... resistance due to stern shape
- R_A ... model-ship correlation resistance
- R_{Add} ... additional resistance, e.g. wind

Total resistance as in [1], [2], [3]

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

R_{App} ... resistance of appendages

- R_W ... wave making and wave breaking resistance
- R_{Tr} ... resistance due to stern shape
- R_A ... model-ship correlation resistance
- R_{Add} ... additional resistance, e.g. wind

Fotal resistance a	as in	[1],	[2],	[3]
--------------------	-------	------	------	-----

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

- R_F ... frictional resistance
- R_{App} ... resistance of appendages
- R_W ... wave making and wave breaking resistance
- R_{Tr} ... resistance due to stern shape
- R_A ... model-ship correlation resistance
- R_{Add} ... additional resistance, e.g. wind

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

- R_{App} ... resistance of appendages
- R_W ... wave making and wave breaking resistance
- R_{Tr} ... resistance due to stern shape
- R_A ... model-ship correlation resistance
- R_{Add} ... additional resistance, e.g. wind

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

- R_{App} ... resistance of appendages
- R_W ... wave making and wave breaking resistance
- R_{Tr} ... resistance due to stern shape
- R_A ... model-ship correlation resistance
- R_{Add} ... additional resistance, e.g. wind

$$R_{total} = R_F + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$$

$$R_{App}$$
 ... resistance of appendages

$$R_W$$
 ... wave making and wave breaking resistance

$$R_{Tr}$$
 ... resistance due to stern shape

$$R_{Add}$$
 ... additional resistance, e.g. wind

Total resista	nce as in [1], [2], [3]	
$R_{total} = R_F$	$r + R_{App} + R_W + R_{Tr} + R_A + R_{Add}$	$= f(u_{rel}, d, \ldots)$
R_F fric R_{App} res R_W wa R_{Tr} res R_A mo R_{Add} adu	ctional resistance sistance of appendages we making and wave breaking resistance sistance due to stern shape odel-ship correlation resistance ditional resistance, e.g. wind	<pre>u_{rel} Relative velocity d Depth</pre>

Required power, efficiency and fuel consumption

$$\begin{aligned} P_{req} &= R_{total} \; u_{rel} \\ P_{del} &= \eta_{p} \; \eta_{s} \; \eta_{g} \; P_{e} \\ P_{e} &= B_{e} / b_{e} \quad \text{with} \quad B_{e} = \dot{V} \; \rho \end{aligned}$$

 $u_{rel} \dots$ Relative velocity $\eta_p \dots$ Propulsion efficiency $\eta_s \dots$ Shaft efficiency $\eta_g \dots$ Gear efficiency

- Required power Delivered power
- Engine power
- $B_e \dots$ Fuel flow rate
- $b_e \dots$ Specific fuel consumption
- V . . . Fuel volume
- $\rho \dots$ Fuel density

Required power, efficiency and fuel consumption

$$\begin{aligned} P_{req} &= R_{total} \; u_{rel} \\ P_{del} &= \eta_{p} \; \eta_{s} \; \eta_{g} \; P_{e} \\ P_{e} &= B_{e} / b_{e} \quad \text{with} \qquad B_{e} = \dot{V} \; \rho \end{aligned}$$

 u_{rel} ... Relative velocity η_p ... Propulsion efficiency η_s ... Shaft efficiency η_g ... Gear efficiency

- Required power Delivered power
- Engine power
- $B_e \dots$ Fuel flow rate
- $b_e \dots$ Specific fuel consumption
- $V \dots$ Fuel volume
- $\rho \dots$ Fuel density

Required power, efficiency and fuel consumption

$$\begin{aligned} P_{req} &= R_{total} \; u_{rel} \\ P_{del} &= \eta_{p} \; \eta_{s} \; \eta_{g} \; P_{e} \\ P_{e} &= B_{e} / b_{e} \quad \text{with} \qquad B_{e} = \dot{V} \; \rho \end{aligned}$$

 u_{rel} ... Relative velocity η_p ... Propulsion efficiency η_s ... Shaft efficiency η_g ... Gear efficiency

- Required power Delivered power
- Engine power
- $B_e \dots$ Fuel flow rate
- $b_e \dots$ Specific fuel consumption
- $V \dots$ Fuel volume
- $\rho \dots$ Fuel density

Required power, efficiency and fuel consumption

$$\begin{aligned} P_{req} &= R_{total} \; u_{rel} \\ P_{del} &= \eta_{p} \; \eta_{s} \; \eta_{g} \; P_{e} \\ P_{e} &= B_{e} / b_{e} \quad \text{with} \qquad B_{e} = \dot{V} \; \rho \end{aligned}$$

 u_{rel} ... Relative velocity η_p ... Propulsion efficiency η_s ... Shaft efficiency η_g ... Gear efficiency

- Required power Delivered power
- Engine power
- $B_e \dots$ Fuel flow rate
- $b_e \dots$ Specific fuel consumption
- V . . . Fuel volume
- $\rho \dots$ Fuel density

Required power, efficiency and fuel consumption

$$\begin{aligned} P_{req} &= R_{total} \; u_{rel} \\ P_{del} &= \eta_{\rho} \; \eta_{s} \; \eta_{g} \; \underset{P_{e}}{P_{e}} \\ P_{e} &= B_{e} / b_{e} \quad \text{with} \quad B_{e} = \dot{V} \; \rho \end{aligned}$$

 u_{rel} ... Relative velocity η_p ... Propulsion efficiency η_s ... Shaft efficiency η_s ... Gear efficiency

- Required power Delivered power
- Engine power
- $B_e \dots$ Fuel flow rate
- $b_e \dots$ Specific fuel consumption
- $V \dots$ Fuel volume
- $\rho \dots$ Fuel density

Required power, efficiency and fuel consumption

$$\begin{aligned} P_{req} &= R_{total} \; u_{rel} \\ P_{del} &= \eta_{p} \; \eta_{s} \; \eta_{g} \; P_{e} \\ P_{e} &= B_{e} / b_{e} \quad \text{with} \qquad B_{e} = \dot{V} \; \rho \end{aligned}$$

 $u_{rel} \dots$ Relative velocity $\eta_p \dots$ Propulsion efficiency $\eta_s \dots$ Shaft efficiency $\eta_g \dots$ Gear efficiency

$$\downarrow P_{\mathit{req}} = P_{\mathit{del}}$$

$$V = \int_0^t \frac{b_e}{\rho} \frac{R_{total} \, u_{rel}}{\eta_p \, \eta_s \, \eta_g} dt$$

Required power Delivered power

- Engine power
- $B_e \dots$ Fuel flow rate
- $b_e \dots$ Specific fuel consumption
- V . . . Fuel volume
- $\rho \dots$ Fuel density

Fuel consumption

Table of Contents

3 Optimization of Fuel Consumption

10

Rhine River, km 520-540

Rhine River, km 520-540

Soon Step

Depth from	BAW 540 555 Ref 8	50 525 meter (rd) 2 10		Current from	n BAW	525 525 x 10	e Mic
Poss	Rozatein sbach <u>er</u> Grun	en d V &	Rid	esheSchutzhafen für Tausch	Geisenheim	späckont Ilder Aue	Ingelh
Section		1	2	3	4	5	
Location	[km]	520-525	525-530	530-532.5	532.5-539	539-542	
Current	[m/s]	1.0	0.8	2.1	1.7	1.4	
Depth	[m]	4.1	4.4	4.7	4.9	4.3	
		- 4		/	7		

Rhine River, km 520-540

Ste

 \rightarrow Optimization problem: How fast in which section in order to reach destination in time while minimizing fuel?

- \blacksquare Ship length: 105 m, width: 9.5 m, draft: 2.7 m
- \blacksquare Engine power: 1000 $\rm kW,$ spec. fuel consumption: 0.18 $\rm kg/\rm kWh$
- \blacksquare Upstream, Traveling time 3h ($u_{\rm abs}\approx7{\rm km/h})$

- \blacksquare Ship length: 105 m, width: 9.5 m, draft: 2.7 m
- \blacksquare Engine power: 1000 $\rm kW,$ spec. fuel consumption: 0.18 $\rm kg/kWh$
- \blacksquare Upstream, Traveling time 3h ($u_{\rm abs}\approx7{\rm km/h})$

Section		1	2	3	4	5
Location	[km]	520-525	525-530	530-532.5	532.5-539	539-542
Current	[m/s]	1.0	0.8	2.1	1.7	1.4
Depth	[m]	4.1	4.4	4.7	4.9	4.3

Simulation specifications

- \blacksquare Ship length: 105 m, width: 9.5 m, draft: 2.7 m
- \blacksquare Engine power: 1000 $\rm kW,$ spec. fuel consumption: 0.18 $\rm kg/kWh$
- \blacksquare Upstream, Traveling time 3h ($u_{\rm abs}\approx7{\rm km/h})$

Section		1	2	3	4	5
Location	[km]	520-525	525-530	530-532.5	532.5-539	539-542
Current	[m/s]	1.0	0.8	2.1	1.7	1.4
Depth	[m]	10	10	10	10	10

www.isys.uni-stuttgart.de

- \blacksquare Ship length: 105 m, width: 9.5 m, draft: 2.7 m
- \blacksquare Engine power: 1000 $\rm kW,$ spec. fuel consumption: 0.18 $\rm kg/kWh$
- \blacksquare Upstream, Traveling time 3h ($u_{\rm abs}\approx7{\rm km/h})$

Section		1	2	3	4	5
Location	[km]	520-525	525-530	530-532.5	532.5-539	539-542
Current	[m/s]	1.4	1.4	1.4	1.4	1.4
Depth	[m]	4.1	4.4	4.7	4.9	4.3

University of Stuttgart

Velocity Optimization

- \blacksquare Ship length: 105 m, width: 9.5 m, draft: 2.7 m
- \blacksquare Engine power: 1000 $\rm kW,$ spec. fuel consumption: 0.18 $\rm kg/kWh$
- \blacksquare Upstream, Traveling time 3h ($u_{\rm abs}\approx7{\rm km/h})$

Section		1	2	3	4	5
Location	[km]	520-525	525-530	530-532.5	532.5-539	539-542
Current	[m/s]	1.0	0.8	2.1	1.7	1.4
Depth	[m]	4.1	4.4	4.7	4.9	4.3

- \blacksquare Ship length: 105 m, width: 9.5 m, draft: 2.7 m
- \blacksquare Engine power: 1000 $\rm kW,$ spec. fuel consumption: 0.18 $\rm kg/kWh$
- Upstream, Traveling time 4h ($u_{\rm abs} \approx 5 {\rm km/h}$)

Section		1	2	3	4	5
Location	[km]	520-525	525-530	530-532.5	532.5-539	539-542
Current	[m/s]	1.0	0.8	2.1	1.7	1.4
Depth	[m]	4.1	4.4	4.7	4.9	4.3

Optimization of Lateral Position

Optimization problem: Where to navigate in lateral direction in order to realize and even increase the expected fuel consumption reduction?

vw.isys.uni-stutt<u>gart.de</u>

Optimization of Lateral Position

vw.isys.uni-stuttgart.de

ther Werth Optimization problem: Where to navigate in lateral direction in order to conservate alize and even increase the expected fuel consumption reduction?

Optimization of Lateral Position

Optimization of Lateral Position

 \rightarrow Fuel consumption reduction can only be fully realized with automatic path-following systems on optimal guiding lines.

Table of Contents

4 Summary and Outlook

Summary and Outlook

Summary

- Resistance calculations from literature
- Fuel consumption reduction by adapting the velocity according to depth and current
- Increase of fuel reduction by precisely navigating along an optimal guiding line
- No vessel modifications necessary

Outlook

- Combined optimization along and across the river
 - ightarrow optimal guiding lines
- Investigation at different water levels for different vessels
- Experimental validation

Proposal for validation on the Rhine, ARGO 2

- 20 vessels with navigation system, automatic path-following system and fuel consumption measurement equipment
- River data from Bundesanstalt für Wasserbau (BAW)
- Optimal guiding lines for each vessel and water level
- Comparison between optimal and manual navigation
- Expected fuel consumption reduction: Up to 10%
- Expected cost: \approx 2.0 Mio. \in
- Amortization: \approx 8 months

Thank you for your attention

Reduction of Fuel Consumption by Using Automatic Path-Following Systems

A. Lutz, Prof. Dr.-Ing. E.D. Gilles

- Holtrop, J.; Mennen, G.G.J.: A statistical power prediction method. International Shipbuilding Progress. Vol. 25, 1978.
- Holtrop, J.; Mennen, G.G.J.: An approximate power prediction method. International Shipbuilding Progress. Vol. 29, 1982.
 - Holtrop, J.: A statistical re-analysis of resistance and propulsion data. International Shipbuilding Progress. Vol. 31, 1984.

