Workshop Inland Navigation CO2 emissions April 12th, 2011 Strasbourg, Palais du Rhin

Line -Shaft Contra Rotating Propellers with Diesel Electric Propulsion System

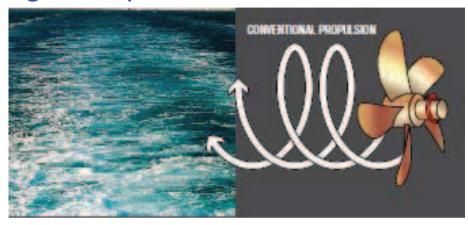
Hideki SHUTO Manager

Ecological Engineering

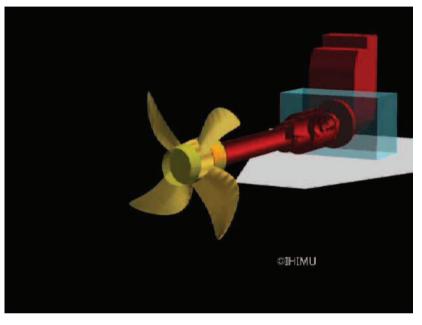
IHI Marine United Inc.

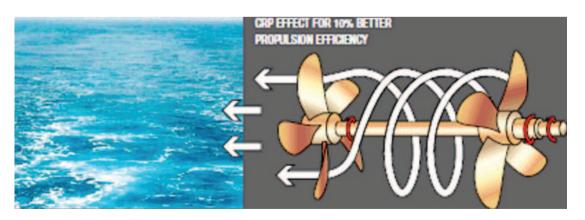
IHIMU is promoting Contra Rotating Propeller combined with Diesel Electric System to the Inland Vessels.

- •IHIMU have delivered **14 Vessels** with CRP combined with diesel electric system.
- •CRP efficiency of 10% is expected.
- Additional fuel saving by diesel electric system is expected



What is In-line Contra Rotating Propeller (CRP) system?


Principle of Contra Rotating Propeller

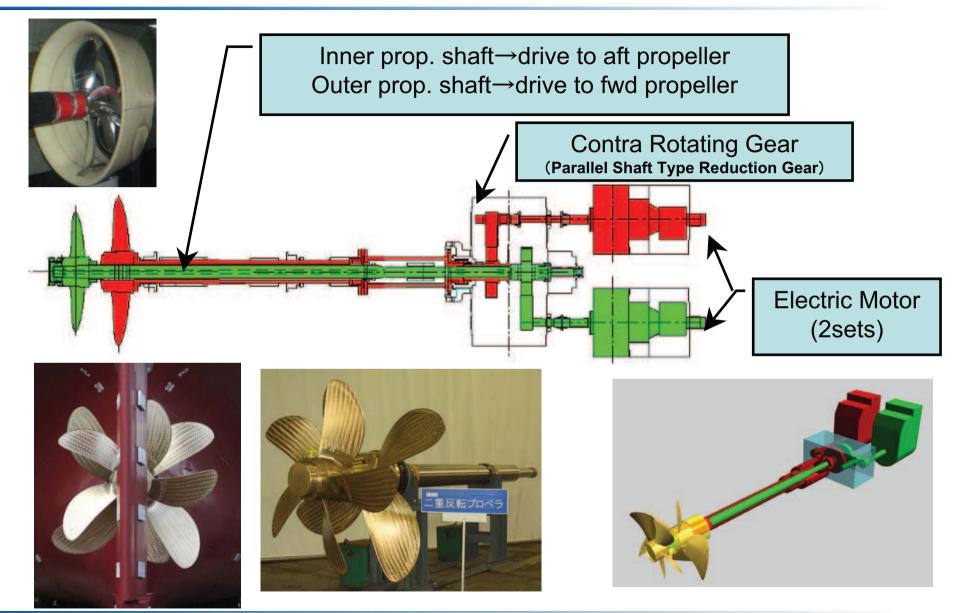

Single Propeller

Rotational stream energy after propeller doesn't work for propulsion

CRP

Improve
10% Efficiency

Rotational stream energy is recovered by aft propeller


CRP Application

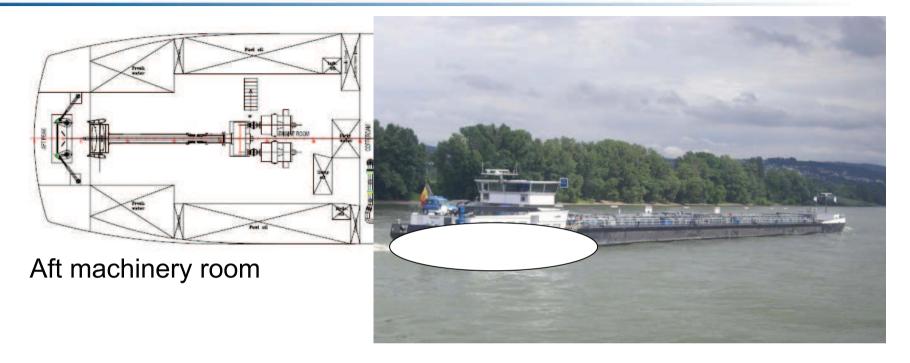
Current Future CO2 \(\Delta 20 \sim 30 \% CO2 $\triangle 10\%$ **Environmental Footprint** Convert NOx △90% NOx △10% PM Δ90% Fuel LNG EN590 Displace the generator engines to gas **Motor** engines. Constant speed engine is more reliable for gas fuelled **Motor** Twin Drive **Driven by** for Diesel Electric System Two electric motors **Delivered 14 vessels** Diesel Displace the main engine to gas Engine engines. or **Dual Fuel** No engine displacement. **Engine** Further investment for gas engine Driven by **Single Drive** is necessary in case direct One diesel engine for Mechanical System coupling with FPP **Delivered 3 vessels**

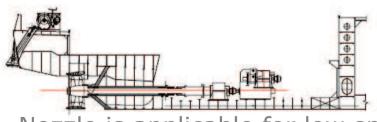
Inline Contra Rotating Propeller

Reference of similar size

Name	Nadeshiko-Maru	Kokuho-Maru	
L×B×D	69.95x11.5x5.25m	76.9x12.2x5.80m	
Cargo Volume	abt. 2,200m ³	abt. 2,500m ³	
	Product	Chemical	
Service Speed	12.0kt	13.0kt	
Propulsion	600KW × 2sets	745KW × 2sets	
Motors	(Inverter)	(Inverter)	
Main Generators	410KW × 4sets	700KW × 3sets	

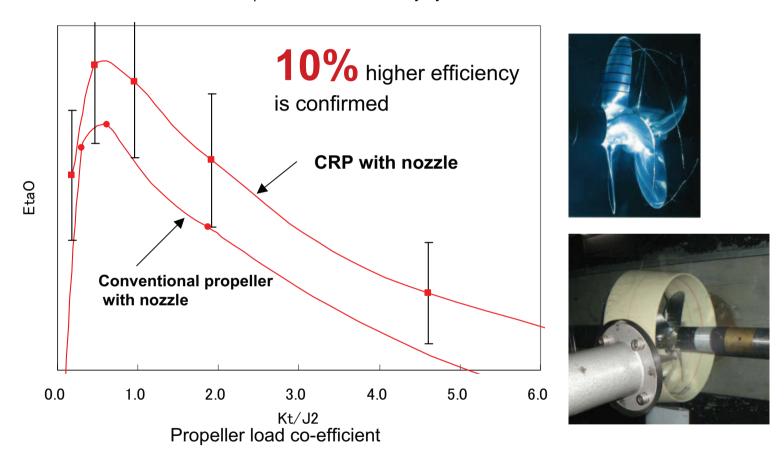
Super Eco Ships in Japan


CRP with Diesel Electric



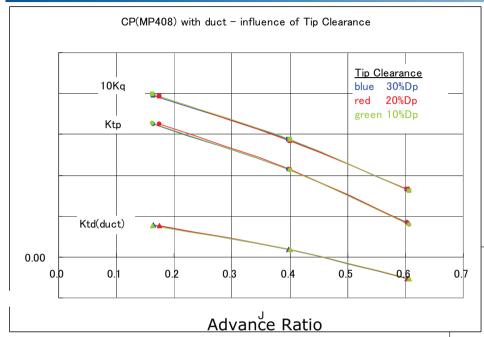
Application to Inland Navigation

110m size Chemical Tanker

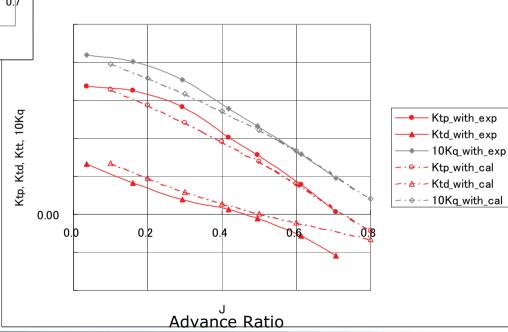

Conventional space is enough

Nozzle is applicable for low speed operation

Tank Test Result -CRP Efficiency with Nozzle-


CP(MP408) vs. CRP2 (fore prop.: MP5053, aft prop.: MP5057)
- improvement of efficiency by CRP

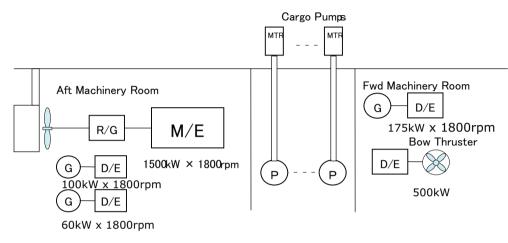
This tank test was carried out to confirm the CRP efficiency with nozzle using the existing CRP for coastal vessel, which is not optimized for duct application.


Tank Test Result -Shallow water & Nozzle-

Efficiency of CRP and nozzle is not influenced by shallow water.

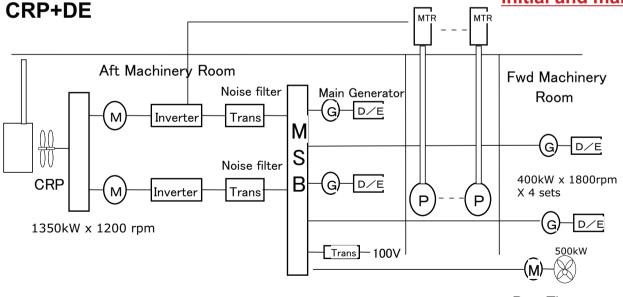
Performance of the nozzle propeller can be predicted by the present design tool accurately

CP(MP408) with duct experiment (25rps:Rn0.8E+5) vs. calculation



Benefits of Super Eco Inland Vessel (SEIV) Why CRP with Diesel Electric Propulsion System? Comparison with conventional plant

Plant Comparison with conventional Single Shaft


Conventional

Total Diesel Engine Power; 2,360kW 5 Types of Engine

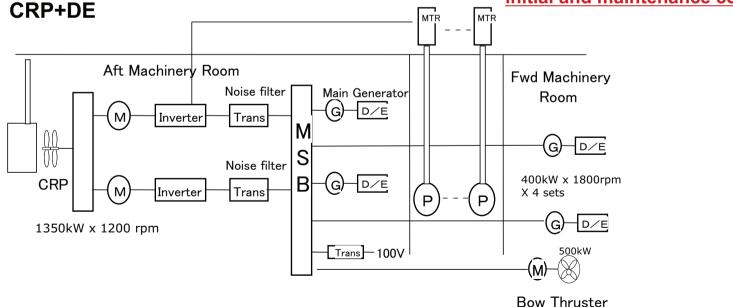
(27% less power and unified engine type saves initial and maintenance cost)

Bow Thruster

Plant Comparison with conventional Single Shaft

For Environmental Economy

- Less FO Consumption by CRP with power management
- Less Emission(NOx, CO2, SOx,PM)
 by Less SFC


60kW x 1800rpm

Total Diesel Engine Power; 2,360kW

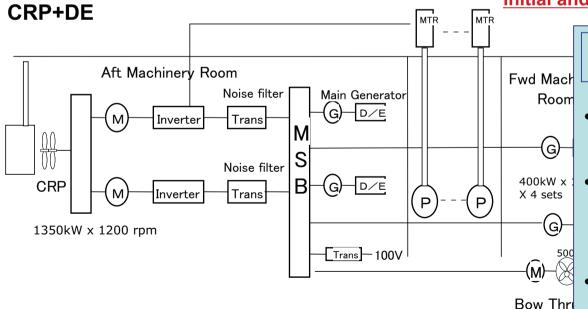
5 Types of Engine

(27% less power and unified engine type saves initial and maintenance cost)

Plant Comparison with conventional Single Shaft

For Environmental Economy

- Less FO Consumption
 by CRP with power management
- Less Emission(NOx, CO2, SOx,PM)
 by Less SFC


60kW x 1800rpm

Total Diesel Engine Power; 2,360kW

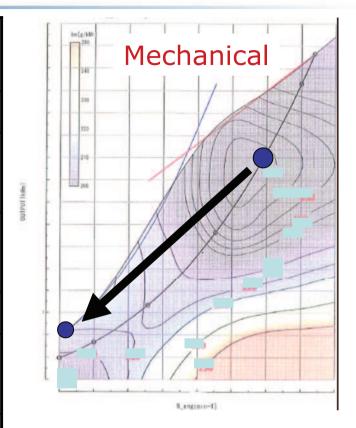
5 Types of Engine

(27% less power and unified engine type saves initial and maintenance cost)

For Safety

- Higher Redundancy
 by DE(Power Plant)+ CRP(Propellers)
- Better Maneuverability
 by Rich Torque Operation
 at Low Speed+Bigger Thrusters
- Flexible Arrangement for reliability by multi location

Why Diesel Electric for Inland Vessels?


110m Chemical Tanker

Operation

	Mechanical	Diesel Electric			
Going Up Stream					
Navigation	No control	Power			
		Management			
Shallow	Poor	Rich			
water	Torque	Torque			
Cargo Handling					
Pump	Load	Inverter			
operation	Control	Control			
Going Down Stream					
Min. load operation	30%	10%			

Diesel Electric

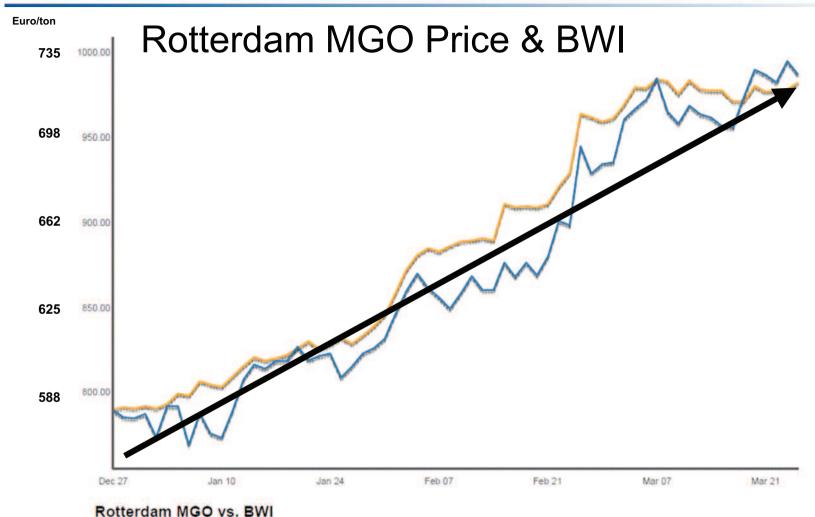
Keep good fuel consumption to control no. of running D/G

FOC Simulation for example

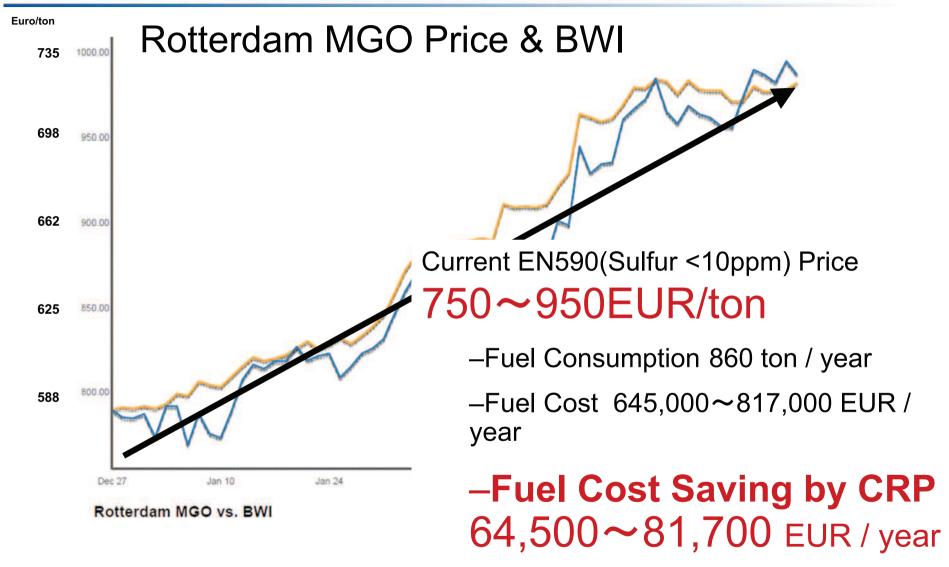
			Navigation			Maneuv ering	Total
			Up Stream		Down		(1round
	Item	Unit	Normal	T. Rich	Stream		trip)
Mechani cal	Main Engine	kW	1350 (90%)	750 (50%)	450 (30%)	450 (30%)	
	SFCR	g/kWh	203	255	222	222	
	Time	Hr	41	29	70	4	6 days
	FO Cons	ton	11.2	5.5	7.0	0.4	24.2
CRP +	D/G Engine	kW	1276 (90%)	567 (50%)	284 (20%)	284 (20%)	
Diesel	SFCR	g/kWh(e)	225	226	226	226	
Electric	Time	Hr	41	29	70	4	6 days
	FO Cons	ton	11.8	3.7	4.5	0.3	20.2

CRP efficiency: 10%

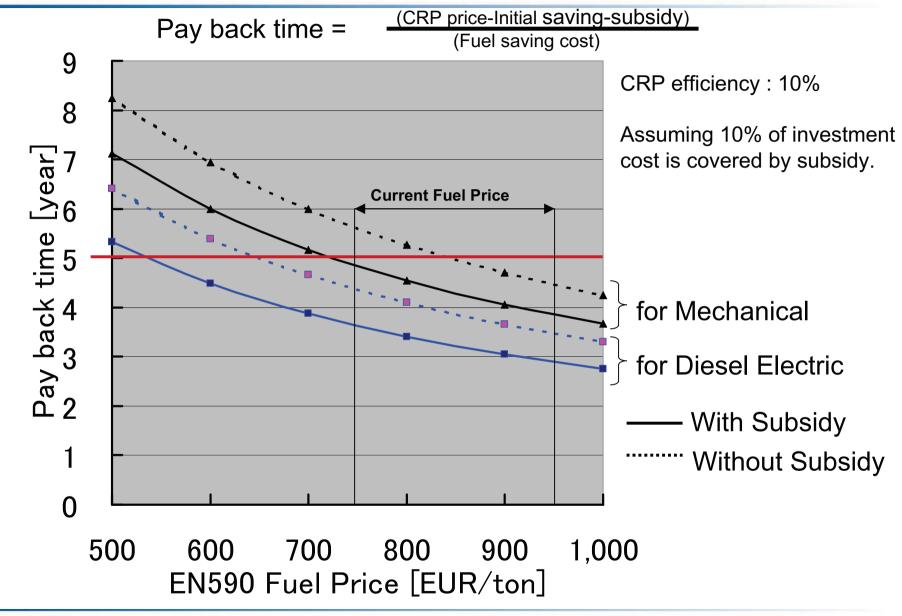
Energy loss (Inverter-Motor): 5%


△16.5%

Evaluation


Bunker Price

Bunker Price

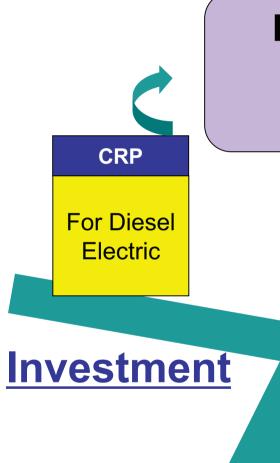


In case of 110m Chemical Tanker

Pay Back Calculation

Cash flow for 110m class

Annual cost


Vessel	Tanker			Dry Cargo		
Case	Base	DE	ME	Base	ME	
		CRP	CRP		CRP	
Labor	Same condition					
Capital	100%	+11%	+6%	100%	+10%	
Other	Same condition					
Fuel	100%	-(10+ α) %	-10%	100%	-10%	
Total	100%	<97.9%	97.9%	100%	98%	
NPV[MEUR] For 20yrs	100%	1.0<	1.0	100%	1.0	

Conditions: Fuel Price: 750 EUR/ton

With subsidy (10%)

Corporate Social Responsibility Appeals

Less Environmental Footprint Higher Safety Higher Redundancy

Shafting System

Main Engine

D/G Sets

Offset Cost from conventional vessel Carbon Tax

Crew

Fuel Lub. Maintenance

Direct Cost Saving

Return

- Less foot print
- Fund condition
- Insurance
- Advertisement
- Better charter condition

In Direct Cost Saving Risk Hedge

Economy Business

New Market Fundamentalism

Green Economy
Modal Shift

Issues

Earth Warming, Low Carbonize

Growth of Developing Countries(Energy/Foods)

Mechanism

Competence Competitiveness

Carbon Tax, Cap & Trade ISO 26000(Social Responsibility)

Reduce CO2 Emissions

Corporate Social Responsibility

- •IHIMU have been delivered 14 Vessels with CRP combined with diesel electric system.
- •CRP efficiency of 10% is expected.
- •Additional fuel saving by "Diesel Electric System "should be studied and validated on board.

IHIMU will help to realize Super Eco Inland vessels for the inland navigation with sustainable competence.

Thank you very much for your attention!

Hartelijk Dank
Vielen Dank
Je vous remercie beaucoup
ありがとうございました。

Hideki SHUTO
IHI Marine United
hideki_shuto@ihimu.ihi.co.jp
www.ihi.co.jp/ihimu/en/

IHI Marine United Inc.

Daniel Leeuw IHI Marine B.V.

tel: +31 10 4116406 Mob:+31-6-53894242 fax: +31 10 4116412

email: imbv@ihimarine.com website: www.ihimarine.com