

Towards the decarbonisation of the transport sector by 2050

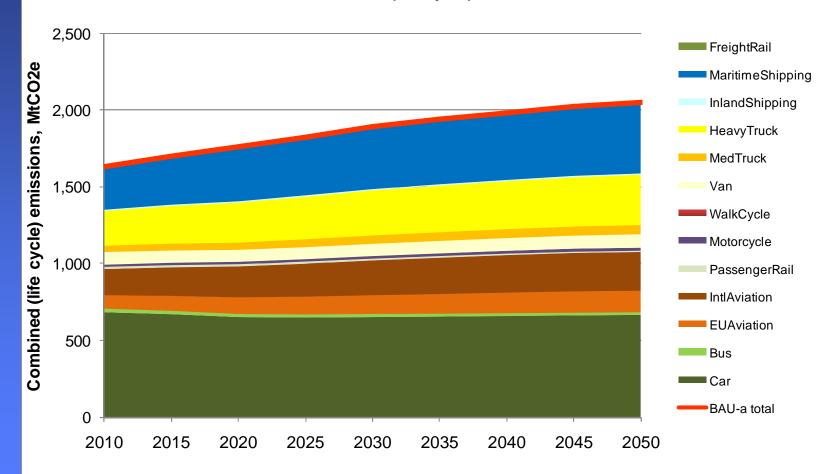
Backcasting policies for climate friendly transport

Ian Hodgson European Commission

Presentation overview

Context Overview of project Some findings & scenarios Conclusions

• EU objective of maximum 2 degree increase Low Carbon Economy Roadmap O Adopted March 8th • Foresees 50-70% GHG reduction from transport • Transport White Paper O Adopted March 28th • Strategy aiming at 60% reduction in transport GHG by 2050


"EU Transport GHG: Routes to 2050?" Goals of project

- Carried out in 2009-10
- Begin to consider long-term GHG policy framework for transport in context of need to reduce overall emissions
- Medium to longer-term (2020 to 2050) i.e. moving beyond shortterm policy measures
- Identify what we know about reducing transport's GHG emissions and what we do not
- Identify by when we need to take action and what that should be
- Qualitative and quantitative approach (necessarily given timeframe)
- Engage transport and other stakeholders in discussing what transport might have to deliver in terms of GHG emissions reductions to 2050
- Covered all modes but main focus on road

Projected BAU-a GHG emissions by mode

Total Combined (life cycle) GHG emissions

Source: SULTAN BAU Scenario, April 2010

"EU Transport GHG: Routes to 2050?" Options to reduce transport GHG emissions...

Decarbonise transport energy Make vehicles more energy/ GHG efficient

Efficient use of vehicles, e.g. co-modality

Efficiency of system

17 Technical project papers and reports covering a range of topic areas

"EU Transport GHG: Routes to 2050?" Part 1 - Assess current knowledge

- **Options:**
 - Inventory and assessment by mode of the technical and non-technical actions that can be taken to reduce GHG emissions.
 - **O** Identification of likely scale of emission reduction
- Policies:
 - Assessment of potential policy instruments for stimulating uptake of these options
 - Issues, risks and limitations associated with these options and instruments
- Other influences:
 - Energy security: understand impact of options
 - Other sectors impact on transport demand
 - Factors limiting uptake of options
 - Other studies: identify assumptions re options and policy instruments
 - Potential technological game-changers

"EU Transport GHG: Routes to 2050?" High level findings – technical options

- Potential technical improvements to existing technologies for all modes
- Up to 50% lower energy consumption per unit transport (compared to current new vehicles) by 2050 from e.g.:
 - Electrification of drivetrains, recovery of energy
 - Improved aerodynamics, lighter vehicles
- Reduction potential from changes to fuels/energy:
 - **O** Electrification of powertrains
 - Fully electric vehicles for (short-distance) road vehicles and trains
 Hybridisation of vehicles on other road applications
 - Biofuels (in longer-term) for long distance road freight, aviation, inland waterways?
 - Fuel cells/hydrogen: Specialised road (fleets, urban buses) and rail applications
 - Wind and Liquefied Natural Gas for maritime ships

"EU Transport GHG: Routes to 2050?" IWW – technical options

Table 7: GHG emissions reduction potential of the technical inland shipping options

Technical option	Current reduction potential on	Current payback time
	ship level where applicable	
Powertrain		
More efficient engines	15 – 20%	> 10 years
Diesel-electric propulsion	10%	> 10 years
Reduction of required		
propulsion		
Larger units (economy of	Up to 75% depending on	No general conclusion
scale)	difference in scale	possible
Improved propeller systems	20 – 30%	Short payback time
Improved hull design	10 – 20%	Short payback time
Computer assisted trip	5 –10%	< 1 year
planning and speed		
management		
Lightweight hulls	5-15%	> 10 years (experimental)
Air lubrication	10%	Unknown (experimental)
Whale tail/experimental	25%	Unknown (experimental)
propulsion systems		

"EU Transport GHG: Routes to 2050?" High level findings – non technical options

- Similar non-technical options applicable across modes
- Optimisation of speeds and routes:
 - Speeds: Limits and enforcement
 - Eco-driving/improved driving behaviour 10% (short-term)?
 - Routes: Voyage optimisation, air traffic management
- Improved maintenance and vehicle optimisation
- Optimised utilisation of freight and passenger transport
- Co-modality/modal shift GHG benefits depend on:
 - Difference in carbon intensity of the modes concerned; and
 - Potential volumes/passenger that can be shifted
- Improved structure and planning of transport system
- Mobility management and system efficiency measures
- Potential role of Intelligent Transport Systems
- Reduction potential highly dependent on specific circumstances, e.g. products being transported

"EU Transport GHG: Routes to 2050?" IWW – non technical options

Speed optimisation

OStrongly dependent on fuel pricing or possible CO₂ instrument

• Improved maintenance

 Limited information – possibly 3-5% per component

• Just —in time routing • Likely to be limited in practice

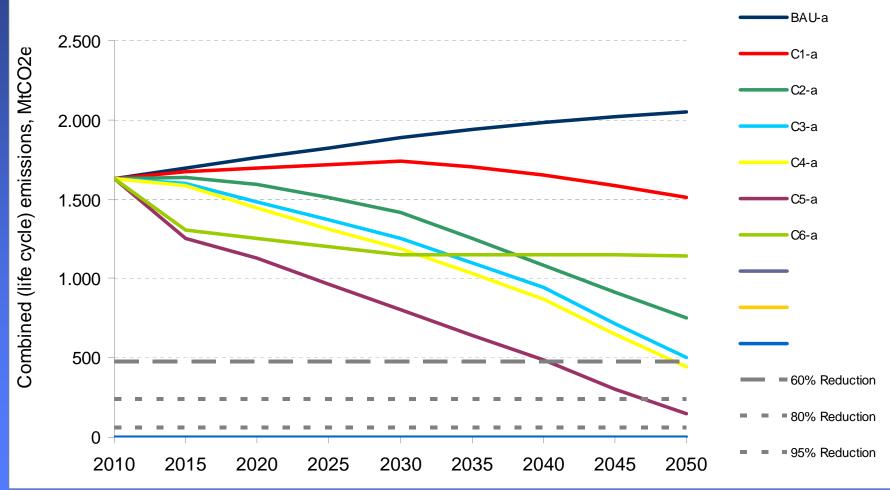
"EU Transport GHG: Routes to 2050?" High level findings – policy instruments

- Similar policy instruments applicable across modes
- Regulation to set standards, e.g.
 - Vehicle fuel efficiency/CO₂ emissions;
 - Fuel carbon intensity.
- Economic instruments to, e.g.:
 - Increase the cost of use
 - Incentivise different patterns of purchase or use
 - Removal of subsidies and perverse incentives
- Spatial planning/infrastructure provision to:
 - Minimise need for travel
 - Enable use of least carbon intensive modes
- Information policies to increase awareness of, e.g.:
 - Climate change reduction options
 - Travel options available
 - New transport technologies
- Ultimate GHG reduction potential depends on scale, scope and level of ambition of policy instruments

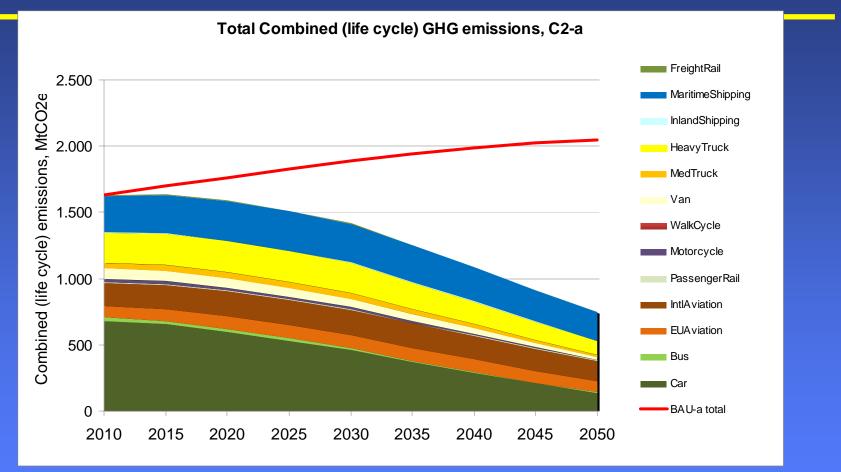
"EU Transport GHG: Routes to 2050?" Illustrative scenarios

- Options and policy instruments papers provided overview of:
 - Reduction potential of various options by mode
 - Potential policy instruments for stimulating uptake of these options
 - Issues, risks and limitations associated with these options and instruments
- Other influences inform development of illustrative scenarios:
 - Assumptions in other studies re options and policy instruments
 - Timing issues for policies
 - Energy security implications
 - Possible breakthrough technologies
- SULTAN "illustrative scenarios tool":
 - Range of possible scenarios to reduce transport GHG
 - What do these mean for GHG emission reduction potential in transport
 - Assumptions made are transparent way
 - Assumptions can be altered to illustrate what change this might deliver

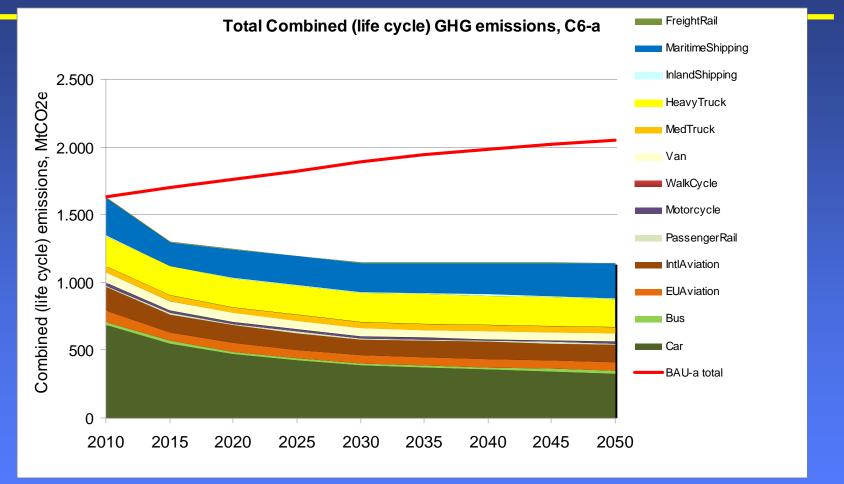
"EU Transport GHG: Routes to 2050?" Combination scenarios assessed


C1	Technical: Increased biofuels penetration	
C2	Technical: Mandatory CO ₂ standards and biofuels	
C3	Technical + Planning + Modal Shift	
C4	Technical + Planning + Modal Shift+ Speed + FED Training	
C5	Technical + Planning + Modal Shift+ Speed + FED Training + Tax (inc CO ₂ Price)	
C6	Non-Technical: Planning + Modal Shift+ Speed + FED Training + Tax (inc CO_2 Price)	

Combination impacts are NOT additive – based on multiplicative combinations of % changes, e.g. for change of X% and Y% for two different scenarios, total impact is: ((1+X%) x (1+Y%) – 1)

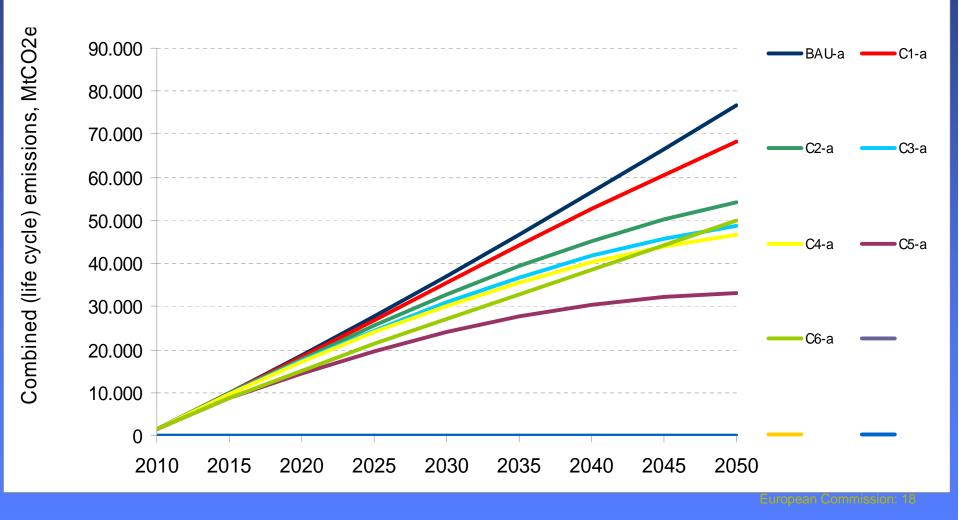

"EU Transport GHG: Routes to 2050?" Comparison of scenarios assessed

Total Combined (life cycle) GHG emissions (Sum All)

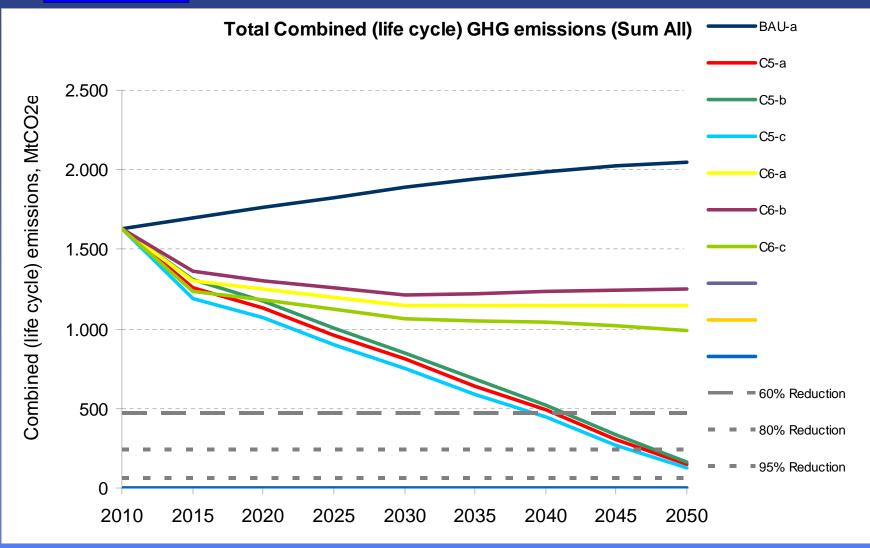

"EU Transport GHG: Routes to 2050?" Scenario 2a – only technical measures

Achieves 36% lower GHG compared to 1990 level

"EU Transport GHG: Routes to 2050?" Scenario 6a – all non-technical measures

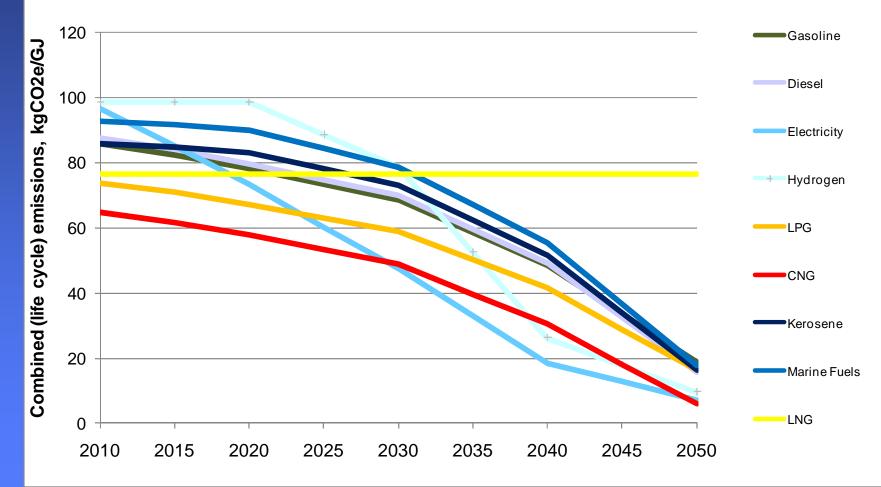


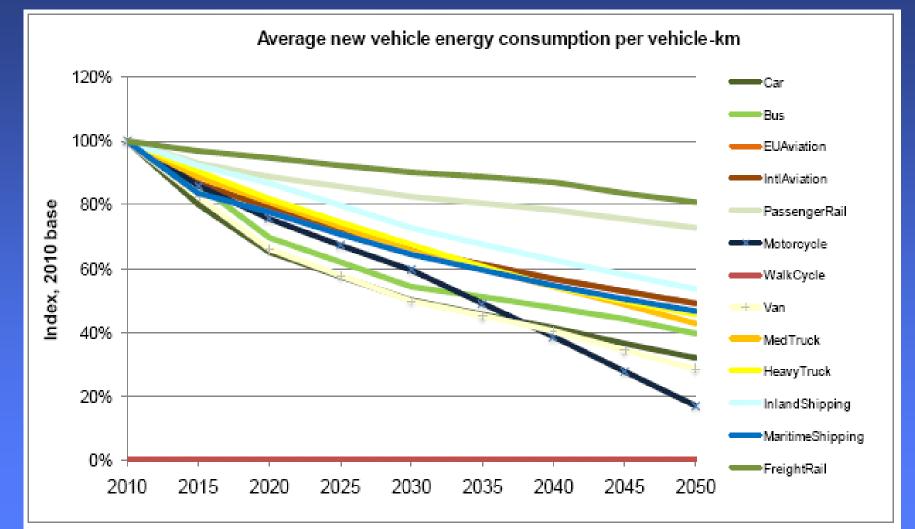
Achieves 3% lower GHC compared to 1990 level


"EU Transport GHG: Routes to 2050?" Cumulative GHG comparison

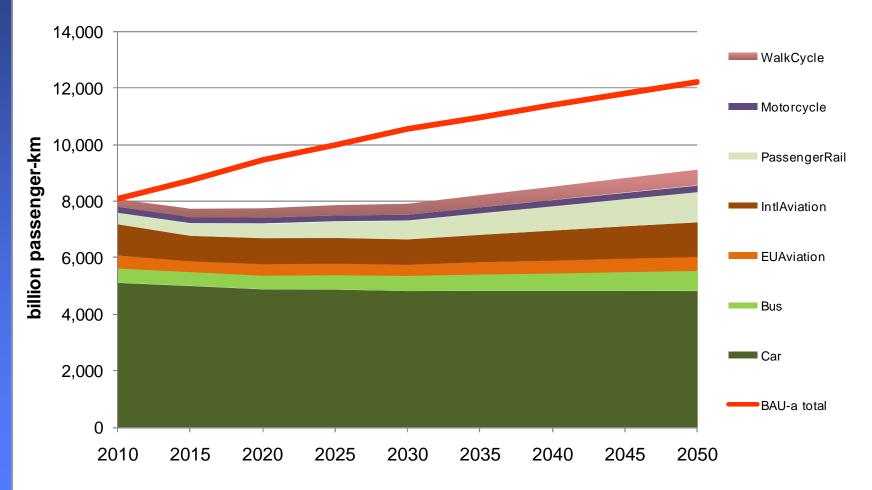
Total cumulative GHG emissions, 2010-2050 (Sum All)

**** * * **

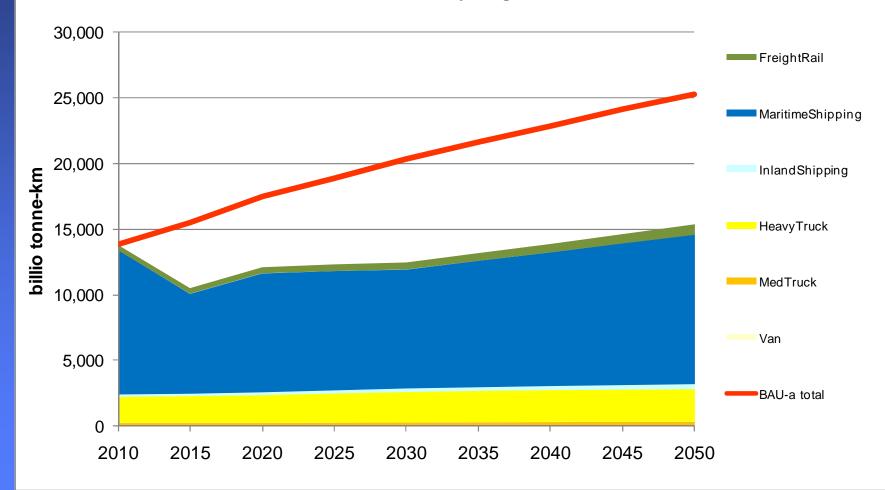

"EU Transport GHG: Routes to 2050?" Impact of CO₂ price


"EU Transport GHG: Routes to 2050?" Energy assumptions – scenario C5

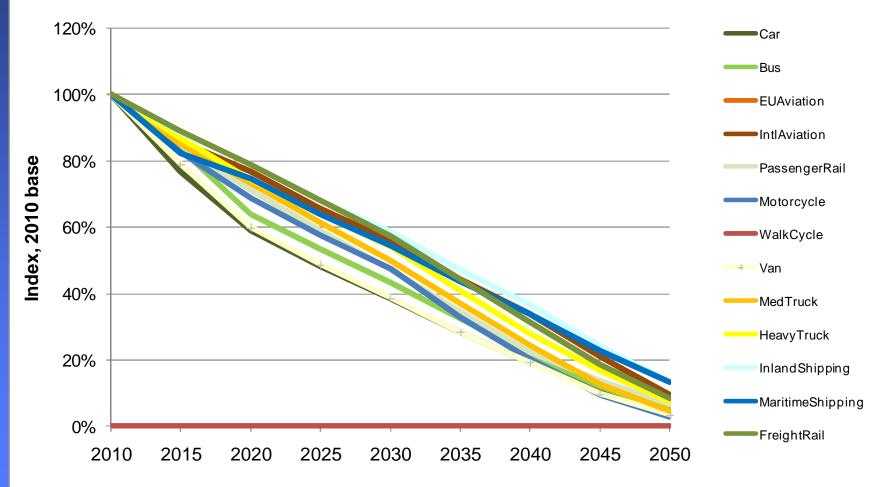
Average GHG emissions factor by energy carrier (Sum All)


"EU Transport GHG: Routes to 2050?" Efficiency assumptions – scenario C5

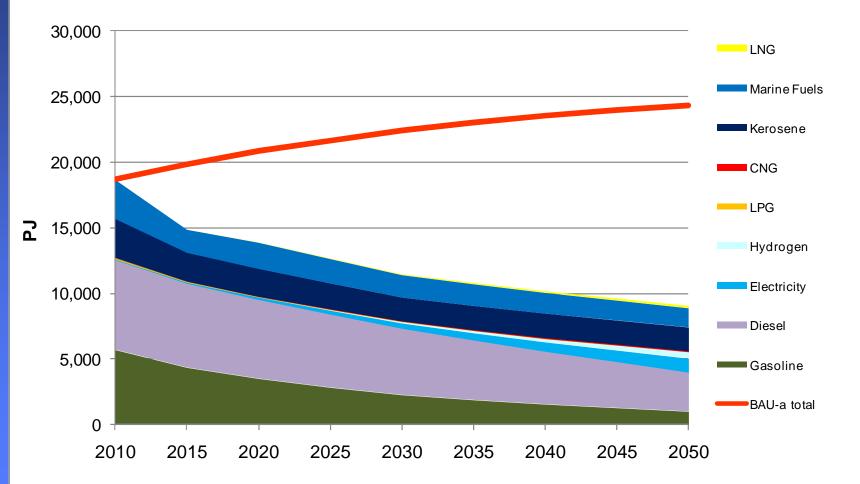
"EU Transport GHG: Routes to 2050?" Passenger demand – scenario C5

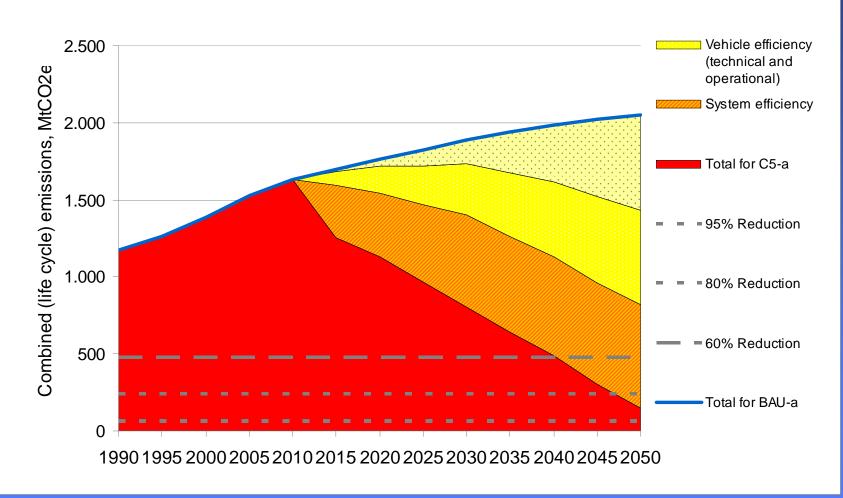

Total demand by passenger mode

"EU Transport GHG: Routes to 2050?" Freight demand – scenario C5


Total demand by freight mode

"EU Transport GHG: Routes to 2050?" Indications from scenario C5


Average new vehicle emissions per vehicle-km


"EU Transport GHG: Routes to 2050?" Indications from scenario C5

Total energy use by energy carrier (Sum All)

"EU Transport GHG: Routes to 2050?" Decomposition of impacts C5

Total Combined (life cycle) GHG emissions (Sum All)

European Commission: 26

Energy GHG intensity

"EU Transport GHG: Routes to 2050?" **Possible long term policy actions (1)**

- Regulation of energy or GHG efficiency of vehicles
 - For all modes
 - Stepwise tightening
 - Test cycles reflecting real life emissions
- **Regulation of energy carriers:**
 - Shift to low-carbon alternatives for current fuels
 - Strong interaction with other sectors (energy, food)
 - **O** Broad facilitation and standardization needed for major shift
- Spatial, infrastructure, speed and traffic management policy at all levels and abolishment of subsidies to:
 - encourage slow modes
 - **o** influence demand/system efficieency
 - put higher weight to GHG reduction in EIA, SEA and CBA
- Non-transport policy for transition to transport extensive economic growth (e.g. development of Green GDP)

"EU Transport GHG: Routes to 2050?" **Possible long term policy actions (2)**

- Set of pricing policies at all levels to:
 - Support uptake of low-carbon technology
 - Influence demand
 - **O** Improve efficiency of the transport system
- Generic pricing instrument:
 - Carbon tax on fuel
 - **•** Transport in ETS or separate emission trading scheme for transport
- Other key pricing instruments:
 - Kilometre-charging
 - **•** Vehicle taxation (differentiated to fuel efficiency)
 - Company car taxation (50% of new cars is bought by companies!)
 - **O** Remove tax exemption for travel expense declaration
 - **O** Same VAT regime for all transport modes
 - Land use taxation
 - **O** Parking fees and permits

Follow up:

- "Transport GHG: Routes to 2050" follow-on project to provide further insights :
 - Co-benefits
 - Embedded emissions (vehicles and infrastructure)
 - Knock-on consequences
 - Less transport intensive structures
 - Major risks and uncertainties
 - **O SULTAN further development**
 - Interaction between pre and post 2020 policies
 - Cost effectiveness of packages

"EU Transport GHG: Routes to 2050?" Key Conclusions (1)

- Transport demand and GHG emissions expected to keep on growing without policy intervention
- To meet long term goals requires transport GHG emission reductions of the order of 60% compared to 1990
- Broad range of ambitious options required: technical, structural and improved system efficiency
- Under-achievement in one area implies more effort in others
- No policy silver bullet exists mix of policy instruments needed

"EU Transport GHG: Routes to 2050?" Key Conclusions (2)

- Over half potential reduction is due to technical measures (mainly decarbonisation of fuels and vehicle efficiency), with the remainder due to non-technical measures
- All government levels need to take action:
 - Energy efficient vehicles and low carbon energy: particularly national and international level
 - More efficient transport system and transport system efficiency: action at all levels required
- Urgent need for action because of long lead times and risks of policies achieving less than expected

EU Transport GHG: Routes to 2050?

www.eutransportghg2050.eu

Partners

www.climatechange.eu.com

ian.hodgson@ec.europa.eu

YOU CONTROL CLIMATE CHANGE.

TURN DOWN. SWITCH OFF. RECYCLE. WALK. CHANGE